Source code for pyrit.prompt_converter.azure_speech_text_to_audio_converter

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
from typing import TYPE_CHECKING, Literal, Optional

if TYPE_CHECKING:
    import azure.cognitiveservices.speech as speechsdk  # noqa: F401

from pyrit.auth.azure_auth import get_speech_config
from pyrit.common import default_values
from pyrit.models import PromptDataType, data_serializer_factory
from pyrit.prompt_converter import ConverterResult, PromptConverter

logger = logging.getLogger(__name__)


[docs] class AzureSpeechTextToAudioConverter(PromptConverter): """ Generates a wave file from a text prompt using Azure AI Speech service. https://learn.microsoft.com/en-us/azure/ai-services/speech-service/text-to-speech """ #: The name of the Azure region. AZURE_SPEECH_REGION_ENVIRONMENT_VARIABLE: str = "AZURE_SPEECH_REGION" #: The API key for accessing the service. AZURE_SPEECH_KEY_ENVIRONMENT_VARIABLE: str = "AZURE_SPEECH_KEY" #: The resource ID for accessing the service when using Entra ID auth. AZURE_SPEECH_RESOURCE_ID_ENVIRONMENT_VARIABLE: str = "AZURE_SPEECH_RESOURCE_ID" #: Supported audio formats for output. AzureSpeechAudioFormat = Literal["wav", "mp3"]
[docs] def __init__( self, azure_speech_region: Optional[str] = None, azure_speech_key: Optional[str] = None, azure_speech_resource_id: Optional[str] = None, use_entra_auth: bool = False, synthesis_language: str = "en_US", synthesis_voice_name: str = "en-US-AvaNeural", output_format: AzureSpeechAudioFormat = "wav", ) -> None: """ Initializes the converter with Azure Speech service credentials, synthesis language, and voice name. Args: azure_speech_region (str, Optional): The name of the Azure region. azure_speech_key (str, Optional): The API key for accessing the service (only if you're not using Entra authentication). azure_speech_resource_id (str, Optional): The resource ID for accessing the service when using Entra ID auth. This can be found by selecting 'Properties' in the 'Resource Management' section of your Azure Speech resource in the Azure portal. use_entra_auth (bool): Whether to use Entra ID authentication. If True, azure_speech_resource_id must be provided. If False, azure_speech_key must be provided. Defaults to False. synthesis_language (str): Synthesis voice language. synthesis_voice_name (str): Synthesis voice name, see URL. For more details see the following link for synthesis language and synthesis voice: https://learn.microsoft.com/en-us/azure/ai-services/speech-service/language-support filename (str): File name to be generated. Please include either .wav or .mp3. output_format (str): Either wav or mp3. Must match the file prefix. Raises: ValueError: If the required environment variables are not set, if azure_speech_key is passed in when use_entra_auth is True, or if azure_speech_resource_id is passed in when use_entra_auth is False. """ self._azure_speech_region: str = default_values.get_required_value( env_var_name=self.AZURE_SPEECH_REGION_ENVIRONMENT_VARIABLE, passed_value=azure_speech_region, ) if use_entra_auth: if azure_speech_key: raise ValueError("If using Entra ID auth, please do not specify azure_speech_key.") self._azure_speech_resource_id = default_values.get_required_value( env_var_name=self.AZURE_SPEECH_RESOURCE_ID_ENVIRONMENT_VARIABLE, passed_value=azure_speech_resource_id, ) self._azure_speech_key = None else: if azure_speech_resource_id: raise ValueError("If using key auth, please do not specify azure_speech_resource_id.") self._azure_speech_key = default_values.get_required_value( env_var_name=self.AZURE_SPEECH_KEY_ENVIRONMENT_VARIABLE, passed_value=azure_speech_key, ) self._azure_speech_resource_id = None self._synthesis_language = synthesis_language self._synthesis_voice_name = synthesis_voice_name self._output_format = output_format
[docs] def input_supported(self, input_type: PromptDataType) -> bool: return input_type == "text"
[docs] def output_supported(self, output_type: PromptDataType) -> bool: return output_type == "audio_path"
[docs] async def convert_async(self, *, prompt: str, input_type: PromptDataType = "text") -> ConverterResult: """ Converts the given text prompt into its audio representation. Args: prompt (str): The text prompt to be converted into audio. input_type (PromptDataType): The type of input data. Returns: ConverterResult: The result containing the audio file path. Raises: ModuleNotFoundError: If the ``azure.cognitiveservices.speech`` module is not installed. RuntimeError: If there is an error during the speech synthesis process. ValueError: If the input type is not supported or if the prompt is empty. """ try: import azure.cognitiveservices.speech as speechsdk # noqa: F811 except ModuleNotFoundError as e: logger.error( "Could not import azure.cognitiveservices.speech. " + "You may need to install it via 'pip install pyrit[speech]'" ) raise e if not self.input_supported(input_type): raise ValueError("Input type not supported") if prompt.strip() == "": raise ValueError("Prompt was empty. Please provide valid input prompt.") audio_serializer = data_serializer_factory( category="prompt-memory-entries", data_type="audio_path", extension=self._output_format ) audio_serializer_file = None try: speech_config = get_speech_config( resource_id=self._azure_speech_resource_id, key=self._azure_speech_key, region=self._azure_speech_region ) pull_stream = speechsdk.audio.PullAudioOutputStream() audio_cfg = speechsdk.audio.AudioOutputConfig(stream=pull_stream) speech_config.speech_synthesis_language = self._synthesis_language speech_config.speech_synthesis_voice_name = self._synthesis_voice_name if self._output_format == "mp3": speech_config.set_speech_synthesis_output_format( speechsdk.SpeechSynthesisOutputFormat.Audio16Khz32KBitRateMonoMp3 ) speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_cfg) result = speech_synthesizer.speak_text_async(prompt).get() if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: audio_data = result.audio_data await audio_serializer.save_data(audio_data) audio_serializer_file = str(audio_serializer.value) logger.info( "Speech synthesized for text [{}], and the audio was saved to [{}]".format( prompt, audio_serializer_file ) ) elif result.reason == speechsdk.ResultReason.Canceled: cancellation_details = result.cancellation_details logger.info("Speech synthesis canceled: {}".format(cancellation_details.reason)) if cancellation_details.reason == speechsdk.CancellationReason.Error: logger.error("Error details: {}".format(cancellation_details.error_details)) raise RuntimeError( "Speech synthesis canceled: {}".format(cancellation_details.reason) + "Error details: {}".format(cancellation_details.error_details) ) except Exception as e: logger.error("Failed to convert prompt to audio: %s", str(e)) raise return ConverterResult(output_text=audio_serializer_file, output_type="audio_path")