3. AML Chat Targets

3. AML Chat Targets#

This code shows how to use Azure Machine Learning (AML) managed online endpoints with PyRIT.

Prerequisites#

  1. Deploy an AML-Managed Online Endpoint: Confirm that an Azure Machine Learning managed online endpoint is already deployed.

  2. Obtain the API Key:

    • Navigate to the AML Studio.

    • Go to the ‘Endpoints’ section.

    • Retrieve the API key and endpoint URI from the ‘Consume’ tab
      aml_managed_online_endpoint_api_key.png

  3. Set the Environment Variable:

    • Add the obtained API key to an environment variable named AZURE_ML_KEY. This is the default API key when the target is instantiated.

    • Add the obtained endpoint URI to an environment variable named AZURE_ML_MANAGED_ENDPOINT. This is the default endpoint URI when the target is instantiated.

    • If you’d like, feel free to make additional API key and endpoint URI environment variables in your .env file for different deployed models (e.g. mistralai-Mixtral-8x7B-Instruct-v01, Phi-3.5-MoE-instruct, Llama-3.2-3B-Instruct, etc.) and pass them in as arguments to the _set_env_configuration_vars function to interact with those models.

Create a AzureMLChatTarget#

After deploying a model and populating your env file, send prompts to the model using the AzureMLChatTarget class. Model parameters can be passed upon instantiation or set using the _set_model_parameters() function. **param_kwargs allows for the setting of other parameters not explicitly shown in the constructor. A general list of possible adjustable parameters can be found here: https://huggingface.co/docs/api-inference/tasks/text-generation but note that not all parameters may have an effect depending on the specific model. The parameters that can be set per model can usually be found in the ‘Consume’ tab when you navigate to your endpoint in AML Studio.

from pyrit.common import IN_MEMORY, initialize_pyrit
from pyrit.executor.attack import ConsoleAttackResultPrinter, PromptSendingAttack
from pyrit.prompt_target import AzureMLChatTarget

initialize_pyrit(memory_db_type=IN_MEMORY)

# Defaults to endpoint and api_key pulled from the AZURE_ML_MANAGED_ENDPOINT and AZURE_ML_KEY environment variables
azure_ml_chat_target = AzureMLChatTarget()

# The environment variable args can be adjusted below as needed for your specific model.
azure_ml_chat_target._set_env_configuration_vars(
    endpoint_uri_environment_variable="AZURE_ML_MANAGED_ENDPOINT", api_key_environment_variable="AZURE_ML_KEY"
)
# Parameters such as temperature and repetition_penalty can be set using the _set_model_parameters() function.
azure_ml_chat_target._set_model_parameters(temperature=0.9, repetition_penalty=1.3)

attack = PromptSendingAttack(objective_target=azure_ml_chat_target)

result = await attack.execute_async(objective="Hello! Describe yourself and the company who developed you.")  # type: ignore
await ConsoleAttackResultPrinter().print_conversation_async(result=result)  # type: ignore

azure_ml_chat_target.dispose_db_engine()
────────────────────────────────────────────────────────────────────────────────────────────────────
🔹 Turn 1 - USER
────────────────────────────────────────────────────────────────────────────────────────────────────
  Hello! Describe yourself and the company who developed you.

────────────────────────────────────────────────────────────────────────────────────────────────────
🔸 ASSISTANT
────────────────────────────────────────────────────────────────────────────────────────────────────
  I am an advanced conversational AI model, designed to assist with a wide range of tasks and
      provide meaningful and engaging conversations. I was developed by Mistral AI, a cutting-edge AI
      company based in Paris, France. Mistral AI's mission is to create innovative, powerful, and
      responsible AI solutions that can positively impact various aspects of society, from customer
      service and support to education and entertainment. I am proud to be part of Mistral AI's
      commitment to pushing the boundaries of AI technology while ensuring ethical and transparent
      practices.

────────────────────────────────────────────────────────────────────────────────────────────────────

You can then use this cell anywhere you would use a PromptTarget object. For example, you can create a red teaming orchestrator and use this instead of the AzureOpenAI target and do the Gandalf or Crucible Demos but use this AML model.

This is also shown in the Red Teaming Orchestrator documentation.