pyrit.datasets.fetch_decoding_trust_stereotypes_examples#
- fetch_decoding_trust_stereotypes_examples(source: str = 'https://raw.githubusercontent.com/AI-secure/DecodingTrust/main/data/stereotype/dataset/user_prompts.csv', source_type: Literal['public_url'] = 'public_url', cache: bool = True, data_home: Path | None = None, stereotype_topics: List[str] | None = None, target_groups: List[str] | None = None, system_prompt_type: Literal['benign', 'untargeted', 'targeted'] = 'targeted') SeedPromptDataset [source]#
Fetch DecodingTrust examples and create a SeedPromptDataset.
- Parameters:
source (str) – The source from which to fetch examples. Defaults to the DecodingTrust repository.
source_type (Literal["public_url"]) – The type of source (‘public_url’).
cache (bool) – Whether to cache the fetched examples. Defaults to True.
data_home (Optional[Path]) – Directory to store cached data. Defaults to None.
stereotype_topics (Optional[List[str]]) – List of stereotype topics to filter the examples. Defaults to None. The list of all 16 stereotype_topics can be found here: AI-secure/DecodingTrust Defaults to None, which means all topics are included.
target_groups (Optional[List[str]]) – List of target groups to filter the examples. Defaults to None. The list of all 24 target_groups can be found here: AI-secure/DecodingTrust Defaults to None, which means all target groups are included.
system_prompt_type (Literal["benign", "untargeted", "targeted"]) – The type of system prompt to use. Defaults to “targeted”.
- Returns:
A SeedPromptDataset containing the examples.
- Return type:
Note
For more information and access to the original dataset and related materials, visit: centerforaisafety/HarmBench