# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import abc
import json
import uuid
from abc import abstractmethod
from typing import Optional, Sequence
from pyrit.common.batch_helper import batch_task_async
from pyrit.exceptions import InvalidJsonException, pyrit_json_retry, remove_markdown_json
from pyrit.memory import CentralMemory, MemoryInterface
from pyrit.models import PromptDataType, PromptRequestPiece, PromptRequestResponse, Score, ScoreType, UnvalidatedScore
from pyrit.prompt_target import PromptChatTarget
[docs]
class Scorer(abc.ABC):
"""
Abstract base class for scorers.
"""
scorer_type: ScoreType
@property
def _memory(self) -> MemoryInterface:
return CentralMemory.get_memory_instance()
[docs]
@abstractmethod
async def score_async(self, request_response: PromptRequestPiece, *, task: Optional[str] = None) -> list[Score]:
"""
Score the request_response, add the results to the database
and return a list of Score objects.
Args:
request_response (PromptRequestPiece): The request response to be scored.
task (str): The task based on which the text should be scored (the original attacker model's objective).
Returns:
list[Score]: A list of Score objects representing the results.
"""
raise NotImplementedError("score_async method not implemented")
[docs]
@abstractmethod
def validate(self, request_response: PromptRequestPiece, *, task: Optional[str] = None):
"""
Validates the request_response piece to score. Because some scorers may require
specific PromptRequestPiece types or values.
Args:
request_response (PromptRequestPiece): The request response to be validated.
task (str): The task based on which the text should be scored (the original attacker model's objective).
"""
raise NotImplementedError("score_async method not implemented")
[docs]
async def score_text_async(self, text: str, *, task: Optional[str] = None) -> list[Score]:
"""
Scores the given text based on the task using the chat target.
Args:
text (str): The text to be scored.
task (str): The task based on which the text should be scored (the original attacker model's objective).
Returns:
list[Score]: A list of Score objects representing the results.
"""
request_piece = PromptRequestPiece(
role="user",
original_value=text,
)
request_piece.id = None
return await self.score_async(request_piece, task=task)
[docs]
async def score_prompts_batch_async(
self,
*,
request_responses: Sequence[PromptRequestPiece],
tasks: Optional[Sequence[str]] = None,
batch_size: int = 10,
) -> list[Score]:
if not tasks:
tasks = [None] * len(request_responses)
elif len(tasks) != len(request_responses):
raise ValueError("The number of tasks must match the number of request_responses.")
prompt_target = getattr(self, "_prompt_target", None)
results = await batch_task_async(
task_func=self.score_async,
task_arguments=["request_response", "task"],
prompt_target=prompt_target,
batch_size=batch_size,
items_to_batch=[request_responses, tasks],
)
# results is a list[list[Score]] and needs to be flattened
return [score for sublist in results for score in sublist]
[docs]
async def score_image_async(self, image_path: str, *, task: Optional[str] = None) -> list[Score]:
"""
Scores the given image using the chat target.
Args:
text (str): The image to be scored.
task (str): The task based on which the text should be scored (the original attacker model's objective).
Returns:
list[Score]: A list of Score objects representing the results.
"""
request_piece = PromptRequestPiece(
role="user",
original_value=image_path,
converted_value=image_path,
original_value_data_type="image_path",
converted_value_data_type="image_path",
)
request_piece.id = None
return await self.score_async(request_piece, task=task)
[docs]
def scale_value_float(self, value: float, min_value: float, max_value: float) -> float:
"""
Scales a value from 0 to 1 based on the given min and max values. E.g. 3 stars out of 5 stars would be .5.
Args:
value (float): The value to be scaled.
min_value (float): The minimum value of the range.
max_value (float): The maximum value of the range.
Returns:
float: The scaled value.
"""
if max_value == min_value:
return 0.0
normalized_value = (value - min_value) / (max_value - min_value)
return normalized_value
[docs]
def get_identifier(self):
"""
Returns an identifier dictionary for the scorer.
Returns:
dict: The identifier dictionary.
"""
identifier = {}
identifier["__type__"] = self.__class__.__name__
identifier["__module__"] = self.__class__.__module__
identifier["sub_identifier"] = None
return identifier
@pyrit_json_retry
async def _score_value_with_llm(
self,
*,
prompt_target: PromptChatTarget,
system_prompt: str,
prompt_request_value: str,
prompt_request_data_type: PromptDataType,
scored_prompt_id: str,
category: str = None,
task: str = None,
) -> UnvalidatedScore:
"""
Sends a request to a target, and takes care of retries.
The scorer target response should be JSON with value, rationale, and optional metadata and description fields.
Args:
prompt_target (PromptChatTarget): The target LLM to send the prompt request to.
system_prompt (str): The system-level prompt that guides the behavior of the target LLM.
prompt_request_value (str): The actual value or content to be scored by the LLM.
prompt_request_data_type (PromptDataType): The type of the data being sent in the prompt request.
scored_prompt_id (str): The ID of the scored prompt.
category (str, Optional): The category of the score. Can also be parsed from the JSON response if not
provided.
task (str, Optional): A description of the task that is associated with the score, used for contextualizing
the result.
Returns:
UnvalidatedScore: The score object containing the response from the target LLM.
score_value still needs to be normalized and validated.
"""
conversation_id = str(uuid.uuid4())
prompt_target.set_system_prompt(
system_prompt=system_prompt,
conversation_id=conversation_id,
orchestrator_identifier=None,
)
scorer_llm_request = PromptRequestResponse(
[
PromptRequestPiece(
role="user",
original_value=prompt_request_value,
original_value_data_type=prompt_request_data_type,
converted_value_data_type=prompt_request_data_type,
conversation_id=conversation_id,
prompt_target_identifier=prompt_target.get_identifier(),
)
]
)
response = await prompt_target.send_prompt_async(prompt_request=scorer_llm_request)
try:
response_json = response.request_pieces[0].converted_value
response_json = remove_markdown_json(response_json)
parsed_response = json.loads(response_json)
category_response = parsed_response.get("category")
if category_response and category:
raise ValueError("Category is present in the response and an argument")
category = category_response if category_response else category
score = UnvalidatedScore(
raw_score_value=str(parsed_response["score_value"]),
score_value_description=parsed_response.get("description"),
score_type=self.scorer_type,
score_category=category,
score_rationale=parsed_response["rationale"],
scorer_class_identifier=self.get_identifier(),
score_metadata=parsed_response.get("metadata"),
prompt_request_response_id=scored_prompt_id,
task=task,
)
except json.JSONDecodeError:
raise InvalidJsonException(message=f"Invalid JSON response: {response_json}")
except KeyError:
raise InvalidJsonException(message=f"Invalid JSON response, missing Key: {response_json}")
try:
if self.scorer_type == "float_scale":
# raise an exception if it's not parsable as a float
float(score.raw_score_value)
except ValueError:
raise InvalidJsonException(
message=f"Invalid JSON response, score_value should be a float not this: {score.raw_score_value}"
)
return score