Source code for pyrit.prompt_target.openai.openai_completion_target

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
from typing import Any, Optional

from pyrit.exceptions.exception_classes import (
    pyrit_target_retry,
)
from pyrit.models import Message, construct_response_from_request
from pyrit.prompt_target import OpenAITarget, limit_requests_per_minute

logger = logging.getLogger(__name__)


[docs] class OpenAICompletionTarget(OpenAITarget):
[docs] def __init__( self, max_tokens: Optional[int] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, n: Optional[int] = None, *args, **kwargs, ): """ Initialize the OpenAICompletionTarget with the given parameters. Args: model_name (str, Optional): The name of the model. endpoint (str, Optional): The target URL for the OpenAI service. api_key (str, Optional): The API key for accessing the Azure OpenAI service. Defaults to the `OPENAI_CHAT_KEY` environment variable. headers (str, Optional): Headers of the endpoint (JSON). use_entra_auth (bool, Optional): When set to True, user authentication is used instead of API Key. DefaultAzureCredential is taken for https://cognitiveservices.azure.com/.default . Please run `az login` locally to leverage user AuthN. max_requests_per_minute (int, Optional): Number of requests the target can handle per minute before hitting a rate limit. The number of requests sent to the target will be capped at the value provided. max_tokens (int, Optional): The maximum number of tokens that can be generated in the completion. The token count of your prompt plus `max_tokens` cannot exceed the model's context length. temperature (float, Optional): What sampling temperature to use, between 0 and 2. Values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. top_p (float, Optional): An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. presence_penalty (float, Optional): Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. n (int, Optional): How many completions to generate for each prompt. httpx_client_kwargs (dict, Optional): Additional kwargs to be passed to the `httpx.AsyncClient()` constructor. For example, to specify a 3 minutes timeout: httpx_client_kwargs={"timeout": 180} """ super().__init__(*args, **kwargs) self._max_tokens = max_tokens self._temperature = temperature self._top_p = top_p self._frequency_penalty = frequency_penalty self._presence_penalty = presence_penalty self._n = n
def _set_openai_env_configuration_vars(self): self.model_name_environment_variable = "OPENAI_COMPLETION_MODEL" self.endpoint_environment_variable = "OPENAI_COMPLETION_ENDPOINT" self.api_key_environment_variable = "OPENAI_COMPLETION_API_KEY" def _get_target_api_paths(self) -> list[str]: """Return API paths that should not be in the URL.""" return ["/completions", "/v1/completions"] def _get_provider_examples(self) -> dict[str, str]: """Return provider-specific example URLs.""" return { ".openai.azure.com": "https://{resource}.openai.azure.com/openai/v1", "api.openai.com": "https://api.openai.com/v1", } @limit_requests_per_minute @pyrit_target_retry async def send_prompt_async(self, *, message: Message) -> list[Message]: self._validate_request(message=message) message_piece = message.message_pieces[0] logger.info(f"Sending the following prompt to the prompt target: {message_piece}") # Build request parameters body_parameters = { "model": self._model_name, "prompt": message_piece.converted_value, "top_p": self._top_p, "temperature": self._temperature, "frequency_penalty": self._frequency_penalty, "presence_penalty": self._presence_penalty, "max_tokens": self._max_tokens, "n": self._n, } # Filter out None values request_params = {k: v for k, v in body_parameters.items() if v is not None} # Use unified error handler - automatically detects Completion and validates response = await self._handle_openai_request( api_call=lambda: self._async_client.completions.create(**request_params), # type: ignore[call-overload] request=message, ) return [response] async def _construct_message_from_response(self, response: Any, request: Any) -> Message: """ Construct a Message from a Completion response. Args: response: The Completion response from OpenAI SDK. request: The original request MessagePiece. Returns: Message: Constructed message with extracted text. """ logger.info(f"Received response from the prompt target with {len(response.choices)} choices") # Extract response text from validated choices extracted_response = [choice.text for choice in response.choices] return construct_response_from_request(request=request, response_text_pieces=extracted_response) def _validate_request(self, *, message: Message) -> None: n_pieces = len(message.message_pieces) if n_pieces != 1: raise ValueError(f"This target only supports a single message piece. Received: {n_pieces} pieces.") piece_type = message.message_pieces[0].converted_value_data_type if piece_type != "text": raise ValueError(f"This target only supports text prompt input. Received: {piece_type}.")
[docs] def is_json_response_supported(self) -> bool: """Indicates that this target supports JSON response format.""" return False