Source code for pyrit.prompt_target.hugging_face.hugging_face_endpoint_target

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging

from pyrit.common.net_utility import make_request_and_raise_if_error_async
from pyrit.models.prompt_request_response import PromptRequestResponse, construct_response_from_request
from pyrit.prompt_target import PromptTarget

logger = logging.getLogger(__name__)


[docs] class HuggingFaceEndpointTarget(PromptTarget): """The HuggingFaceEndpointTarget interacts with HuggingFace models hosted on cloud endpoints. Inherits from PromptTarget to comply with the current design standards. """
[docs] def __init__( self, *, hf_token: str, endpoint: str, model_id: str, max_tokens: int = 400, temperature: float = 1.0, top_p: float = 1.0, verbose: bool = False, ) -> None: """Initializes the HuggingFaceEndpointTarget with API credentials and model parameters. Args: hf_token (str): The Hugging Face token for authenticating with the Hugging Face endpoint. endpoint (str): The endpoint URL for the Hugging Face model. model_id (str): The model ID to be used at the endpoint. max_tokens (int, Optional): The maximum number of tokens to generate. Defaults to 400. temperature (float, Optional): The sampling temperature to use. Defaults to 1.0. top_p (float, Optional): The cumulative probability for nucleus sampling. Defaults to 1.0. verbose (bool, Optional): Flag to enable verbose logging. Defaults to False. """ super().__init__(verbose=verbose) self.hf_token = hf_token self.endpoint = endpoint self.model_id = model_id self.max_tokens = max_tokens self.temperature = temperature self.top_p = top_p
[docs] async def send_prompt_async(self, *, prompt_request: PromptRequestResponse) -> PromptRequestResponse: """ Sends a normalized prompt asynchronously to a cloud-based HuggingFace model endpoint. Args: prompt_request (PromptRequestResponse): The prompt request containing the input data and associated details such as conversation ID and role. Returns: PromptRequestResponse: A response object containing generated text pieces as a list of `PromptRequestPiece` objects. Each `PromptRequestPiece` includes the generated text and relevant information such as conversation ID, role, and any additional response attributes. Raises: ValueError: If the response from the Hugging Face API is not successful. Exception: If an error occurs during the HTTP request to the Hugging Face endpoint. """ self._validate_request(prompt_request=prompt_request) request = prompt_request.request_pieces[0] headers = {"Authorization": f"Bearer {self.hf_token}"} payload: dict[str, object] = { "inputs": request.converted_value, "parameters": { "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, }, } logger.info(f"Sending the following prompt to the cloud endpoint: {request.converted_value}") try: # Use the utility method to make the request response = await make_request_and_raise_if_error_async( endpoint_uri=self.endpoint, method="POST", request_body=payload, headers=headers, post_type="json", ) response_data = response.json() # Check if the response is a list and handle appropriately if isinstance(response_data, list): # Access the first element if it's a list and extract 'generated_text' safely response_message = response_data[0].get("generated_text", "") else: response_message = response_data.get("generated_text", "") prompt_response = construct_response_from_request( request=request, response_text_pieces=[response_message], prompt_metadata=str({"model_id": self.model_id}), ) return prompt_response except Exception as e: logger.error(f"Error occurred during HTTP request to the Hugging Face endpoint: {e}") raise
def _validate_request(self, *, prompt_request: PromptRequestResponse) -> None: """ Validates the provided prompt request response. Args: prompt_request (PromptRequestResponse): The prompt request to validate. Raises: ValueError: If the request is not valid for this target. """ if len(prompt_request.request_pieces) != 1: raise ValueError("This target only supports a single prompt request piece.") if prompt_request.request_pieces[0].converted_value_data_type != "text": raise ValueError("This target only supports text prompt input.")