Source code for pyrit.prompt_converter.llm_generic_text_converter

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import uuid

from pyrit.models import PromptDataType, PromptRequestPiece, PromptRequestResponse, SeedPrompt
from pyrit.prompt_converter import ConverterResult, PromptConverter
from pyrit.prompt_target import PromptChatTarget

logger = logging.getLogger(__name__)


[docs] class LLMGenericTextConverter(PromptConverter):
[docs] def __init__(self, *, converter_target: PromptChatTarget, prompt_template: SeedPrompt, **kwargs): """ Generic LLM converter that expects text to be transformed (e.g. no JSON parsing or format) Args: converter_target (PromptChatTarget): The endpoint that converts the prompt prompt_template (SeedPrompt, Optional): The prompt template to set as the system prompt. kwargs: Additional parameters for the prompt template. """ self._converter_target = converter_target self._prompt_template = prompt_template self._prompt_kwargs = kwargs
[docs] async def convert_async(self, *, prompt: str, input_type: PromptDataType = "text") -> ConverterResult: """ Convert a prompt based on the prompt template Parameters: prompt (str): The prompt to convert. input_type (PromptDataType, Optional): The data type of the input prompt. Defaults to "text". Returns: ConverterResult: The result of the conversion, including the converted output text and output type. Raises: ValueError: If the input type is not supported. """ conversation_id = str(uuid.uuid4()) kwargs = self._prompt_kwargs.copy() system_prompt = self._prompt_template.render_template_value(**kwargs) self._converter_target.set_system_prompt( system_prompt=system_prompt, conversation_id=conversation_id, orchestrator_identifier=None, ) if not self.input_supported(input_type): raise ValueError("Input type not supported") request = PromptRequestResponse( [ PromptRequestPiece( role="user", original_value=prompt, converted_value=prompt, conversation_id=conversation_id, sequence=1, prompt_target_identifier=self._converter_target.get_identifier(), original_value_data_type=input_type, converted_value_data_type=input_type, converter_identifiers=[self.get_identifier()], ) ] ) response = await self._converter_target.send_prompt_async(prompt_request=request) return ConverterResult(output_text=response.request_pieces[0].converted_value, output_type="text")
[docs] def input_supported(self, input_type: PromptDataType) -> bool: return input_type == "text"