Source code for pyrit.prompt_converter.fuzzer_converter.fuzzer_expand_converter
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import pathlib
import uuid
from pyrit.common.path import DATASETS_PATH
from pyrit.models import SeedPrompt
from pyrit.models.literals import PromptDataType
from pyrit.models.prompt_request_piece import PromptRequestPiece
from pyrit.models.prompt_request_response import PromptRequestResponse
from pyrit.prompt_converter.fuzzer_converter.fuzzer_converter_base import FuzzerConverter
from pyrit.prompt_converter.prompt_converter import ConverterResult
from pyrit.prompt_target import PromptChatTarget
[docs]
class FuzzerExpandConverter(FuzzerConverter):
[docs]
def __init__(self, *, converter_target: PromptChatTarget, prompt_template: SeedPrompt = None):
prompt_template = (
prompt_template
if prompt_template
else SeedPrompt.from_yaml_file(
pathlib.Path(DATASETS_PATH) / "prompt_converters" / "fuzzer_converters" / "expand_converter.yaml"
)
)
super().__init__(converter_target=converter_target, prompt_template=prompt_template)
[docs]
async def convert_async(self, *, prompt: str, input_type: PromptDataType = "text") -> ConverterResult:
"""
Converter to generate versions of prompt with new, prepended sentences.
"""
if not self.input_supported(input_type):
raise ValueError("Input type not supported")
conversation_id = str(uuid.uuid4())
self.converter_target.set_system_prompt(
system_prompt=self.system_prompt,
conversation_id=conversation_id,
orchestrator_identifier=None,
)
formatted_prompt = f"===={self.template_label} BEGINS====\n{prompt}\n===={self.template_label} ENDS===="
request = PromptRequestResponse(
[
PromptRequestPiece(
role="user",
original_value=formatted_prompt,
converted_value=formatted_prompt,
conversation_id=conversation_id,
sequence=1,
prompt_target_identifier=self.converter_target.get_identifier(),
original_value_data_type=input_type,
converted_value_data_type=input_type,
converter_identifiers=[self.get_identifier()],
)
]
)
response = await self.send_prompt_async(request)
return ConverterResult(output_text=response + " " + prompt, output_type="text")