Source code for pyrit.prompt_converter.audio_frequency_converter

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import io
import logging
from typing import Literal

import numpy as np
from scipy.io import wavfile

from pyrit.models import PromptDataType
from pyrit.models.data_type_serializer import data_serializer_factory
from pyrit.prompt_converter import ConverterResult, PromptConverter

logger = logging.getLogger(__name__)


[docs] class AudioFrequencyConverter(PromptConverter): """ The AudioFrequencyConverter takes an audio file and shifts its frequency, by default it will shift it above human range (=20kHz). Args: output_format (str): The format of the audio file. Defaults to "wav". shift_value (int): The value by which the frequency will be shifted. Defaults to 20000 Hz. """ AcceptedAudioFormats = Literal["wav"]
[docs] def __init__( self, *, output_format: AcceptedAudioFormats = "wav", shift_value: int = 20000, ) -> None: self._output_format = output_format self._shift_value = shift_value
[docs] def input_supported(self, input_type: PromptDataType) -> bool: return input_type == "audio_path"
[docs] async def convert_async(self, *, prompt: str, input_type: PromptDataType = "audio_path") -> ConverterResult: """Convert an audio file by shifting its frequency. Args: prompt (str): File path to audio file input_type (PromptDataType): Type of data, defaults to "audio_path" Raises: ValueError: If the input type is not supported. Returns: ConverterResult: The converted audio file as a ConverterResult object. """ if not self.input_supported(input_type): raise ValueError("Input type not supported") try: # Create serializer to read audio data audio_serializer = data_serializer_factory( data_type="audio_path", extension=self._output_format, value=prompt ) audio_bytes = await audio_serializer.read_data() # Read the audio file bytes and process the data bytes_io = io.BytesIO(audio_bytes) sample_rate, data = wavfile.read(bytes_io) shifted_data = data * np.exp(1j * 2 * np.pi * self._shift_value * np.arange(len(data)) / sample_rate) # Convert the real part of the shifted data to int16 shifted_data_int16 = shifted_data.real.astype(np.int16) # Reset buffer and write shifted data as a new WAV file bytes_io.seek(0) wavfile.write(bytes_io, sample_rate, shifted_data_int16) # Retrieve the WAV bytes and save them using the serializer converted_bytes = bytes_io.getvalue() await audio_serializer.save_data(data=converted_bytes) audio_serializer_file = str(audio_serializer.value) logger.info( "Speech synthesized for text [{}], and the audio was saved to [{}]".format( prompt, audio_serializer_file ) ) except Exception as e: logger.error("Failed to convert prompt to audio: %s", str(e)) raise return ConverterResult(output_text=audio_serializer_file, output_type=input_type)