Source code for pyrit.orchestrator.orchestrator_class
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import abc
import ast
import logging
import uuid
from typing import Optional
from pyrit.common import default_values
from pyrit.memory import CentralMemory, MemoryInterface
from pyrit.models import Identifier, PromptDataType
from pyrit.prompt_converter import PromptConverter
from pyrit.prompt_normalizer import NormalizerRequest, NormalizerRequestPiece
logger = logging.getLogger(__name__)
[docs]
class Orchestrator(abc.ABC, Identifier):
_memory: MemoryInterface
[docs]
def __init__(
self,
*,
prompt_converters: Optional[list[PromptConverter]] = None,
verbose: bool = False,
):
self._prompt_converters = prompt_converters if prompt_converters else []
self._memory = CentralMemory.get_memory_instance()
self._verbose = verbose
self._id = uuid.uuid4()
# Pull in global memory labels from .env.local. memory_labels. These labels will be applied to all prompts
# sent via orchestrator.
self._global_memory_labels: dict[str, str] = ast.literal_eval(
default_values.get_non_required_value(env_var_name="GLOBAL_MEMORY_LABELS", passed_value=None) or "{}"
)
if self._verbose:
logging.basicConfig(level=logging.INFO)
def __enter__(self):
"""Enter the runtime context related to this object."""
return self # You can return self or another object that should be used in the with-statement.
def __exit__(self, exc_type, exc_val, exc_tb):
"""Exit the runtime context and perform any cleanup actions."""
self.dispose_db_engine()
[docs]
def dispose_db_engine(self) -> None:
"""
Dispose database engine to release database connections and resources.
"""
self._memory.dispose_engine()
def _create_normalizer_request(
self,
prompt_text: str,
prompt_type: PromptDataType = "text",
converters=None,
metadata=None,
conversation_id=None,
):
if converters is None:
converters = self._prompt_converters
request_piece = NormalizerRequestPiece(
request_converters=converters, prompt_value=prompt_text, prompt_data_type=prompt_type, metadata=metadata
)
request = NormalizerRequest(request_pieces=[request_piece], conversation_id=conversation_id)
return request
[docs]
def get_memory(self):
"""
Retrieves the memory associated with this orchestrator.
"""
return self._memory.get_prompt_request_pieces(orchestrator_id=self._id)
[docs]
def get_score_memory(self):
"""
Retrieves the scores of the PromptRequestPieces associated with this orchestrator.
These exist if a scorer is provided to the orchestrator.
"""
return self._memory.get_scores_by_orchestrator_id(orchestrator_id=self._id)
[docs]
def get_identifier(self) -> dict[str, str]:
orchestrator_dict = {}
orchestrator_dict["__type__"] = self.__class__.__name__
orchestrator_dict["__module__"] = self.__class__.__module__
orchestrator_dict["id"] = str(self._id)
return orchestrator_dict