Source code for pyrit.models.seed_prompt

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

from __future__ import annotations

import logging
import os
import uuid
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Dict, Optional, Sequence, Union

from jinja2 import BaseLoader, Environment, StrictUndefined, Template, Undefined
from tinytag import TinyTag

from pyrit.common.path import PATHS_DICT
from pyrit.common.yaml_loadable import YamlLoadable
from pyrit.models import DataTypeSerializer
from pyrit.models.literals import ChatMessageRole, PromptDataType

logger = logging.getLogger(__name__)


class PartialUndefined(Undefined):
    # Return the original placeholder format
    def __str__(self):
        return f"{{{{ {self._undefined_name} }}}}" if self._undefined_name else ""

    def __repr__(self):
        return f"{{{{ {self._undefined_name} }}}}" if self._undefined_name else ""

    def __iter__(self):
        """Prevent Jinja from evaluating loops by returning a placeholder string instead of an iterable."""
        return self

    def __bool__(self):
        return True  # Ensures it doesn't evaluate to False


[docs] @dataclass class SeedPrompt(YamlLoadable): """Represents a seed prompt with various attributes and metadata.""" # The actual prompt value, which can be a string or a file path value: str # SHA256 hash of the value, used for deduplication value_sha256: Optional[str] = None # The type of data this prompt represents (e.g., text, image, audio, video) data_type: Optional[PromptDataType] = None # Unique identifier for the prompt id: Optional[uuid.UUID] = field(default_factory=lambda: uuid.uuid4()) # Name of the prompt name: Optional[str] = None # Name of the dataset this prompt belongs to dataset_name: Optional[str] = None # Categories of harm associated with this prompt harm_categories: Optional[Sequence[str]] = field(default_factory=lambda: []) # Description of the prompt description: Optional[str] = None # Authors of the prompt authors: Optional[Sequence[str]] = field(default_factory=lambda: []) # Groups affiliated with the prompt groups: Optional[Sequence[str]] = field(default_factory=lambda: []) # Source of the prompt source: Optional[str] = None # Date when the prompt was added to the dataset date_added: Optional[datetime] = field(default_factory=lambda: datetime.now()) # User who added the prompt to the dataset added_by: Optional[str] = None # Arbitrary metadata that can be attached to the prompt metadata: Optional[Dict[str, Union[str, int]]] = field(default_factory=lambda: {}) # Parameters that can be used in the prompt template parameters: Optional[Sequence[str]] = field(default_factory=lambda: []) # Unique identifier for the prompt group prompt_group_id: Optional[uuid.UUID] = None # Alias for the prompt group prompt_group_alias: Optional[str] = None # Role of the prompt in a conversation (e.g., "user", "assistant") role: Optional[ChatMessageRole] = None # Sequence number for ordering prompts in a conversation, prompts with # the same sequence number are grouped together if they also share the same prompt_group_id sequence: Optional[int] = 0 def __post_init__(self) -> None: """Post-initialization to render the template to replace existing values""" self.value = self.render_template_value_silent(**PATHS_DICT) if not self.data_type: # If data_type is not provided, infer it from the value # Note: Does not assign 'error' or 'url' implicitly if os.path.isfile(self.value): _, ext = os.path.splitext(self.value) ext = ext.lstrip(".") if ext in ["mp4", "avi", "mov", "mkv", "ogv", "flv", "wmv", "webm"]: self.data_type = "video_path" elif ext in ["flac", "mp3", "mpeg", "mpga", "m4a", "ogg", "wav"]: self.data_type = "audio_path" elif ext in ["jpg", "jpeg", "png", "gif", "bmp", "tiff", "tif"]: self.data_type = "image_path" else: raise ValueError(f"Unable to infer data_type from file extension: {ext}") else: self.data_type = "text"
[docs] def render_template_value(self, **kwargs) -> str: """Renders self.value as a template, applying provided parameters in kwargs Args: kwargs:Key-value pairs to replace in the SeedPrompt value. Returns: A new prompt with the parameters applied. Raises: ValueError: If parameters are missing or invalid in the template. """ jinja_template = Template(self.value, undefined=StrictUndefined) try: return jinja_template.render(**kwargs) except Exception as e: raise ValueError(f"Error applying parameters: {str(e)}")
[docs] def render_template_value_silent(self, **kwargs) -> str: """Renders self.value as a template, applying provided parameters in kwargs. For parameters in the template that are not provided as kwargs here, this function will leave them as is instead of raising an error. Args: kwargs: Key-value pairs to replace in the SeedPrompt value. Returns: A new prompt with the parameters applied. Raises: ValueError: If parameters are missing or invalid in the template. """ # Create a Jinja template with PartialUndefined placeholders env = Environment(loader=BaseLoader, undefined=PartialUndefined) # type: ignore jinja_template = env.from_string(self.value) try: # Render the template with the provided kwargs return jinja_template.render(**kwargs) except Exception as e: logging.error("Error rendering template: %s", e) return self.value
[docs] async def set_sha256_value_async(self): """ This method computes the SHA256 hash value asynchronously. It should be called after prompt `value` is serialized to text, as file paths used in the `value` may have changed from local to memory storage paths. Note, this method is async due to the blob retrieval. And because of that, we opted to take it out of main and setter functions. The disadvantage is that it must be explicitly called. """ from pyrit.models.data_type_serializer import data_serializer_factory original_serializer = data_serializer_factory( category="seed-prompt-entries", data_type=self.data_type, value=self.value ) self.value_sha256 = await original_serializer.get_sha256()
[docs] def set_encoding_metadata(self): """ This method sets the encoding data for the prompt within metadata dictionary. For images, this is just the file format. For audio and video, this also includes bitrate (kBits/s as int), samplerate (samples/second as int), bitdepth (as int), filesize (bytes as int), and duration (seconds as int) if the file type is supported by TinyTag. Example suppported file types include: MP3, MP4, M4A, and WAV. """ if self.data_type not in ["audio_path", "video_path", "image_path"]: return if self.metadata is None: self.metadata = {} extension = DataTypeSerializer.get_extension(self.value) if extension: extension = extension.lstrip(".") self.metadata.update({"format": extension}) if self.data_type in ["audio_path", "video_path"]: if TinyTag.is_supported(self.value): try: tag = TinyTag.get(self.value) self.metadata.update( { "bitrate": int(round(tag.bitrate)), "samplerate": tag.samplerate, "bitdepth": tag.bitdepth, "filesize": tag.filesize, "duration": int(round(tag.duration)), } ) except Exception as ex: logger.error(f"Error getting audio/video data for {self.value}: {ex}") else: logger.warning( f"Getting audio/video data via TinyTag is not supported for {self.value}.\ If needed, update metadata manually." )
[docs] @classmethod def from_yaml_with_required_parameters( cls, template_path: Union[str, Path], required_parameters: list[str], error_message: Optional[str] = None ) -> "SeedPrompt": """ Load a SeedPrompt from a YAML file and validate that it contains specific parameters. Args: template_path: Path to the YAML file containing the template. required_parameters: List of parameter names that must exist in the template. error_message: Custom error message if validation fails. If None, a default message is used. Returns: SeedPrompt: The loaded and validated seed prompt. Raises: ValueError: If the template doesn't contain all required parameters. """ sp = cls.from_yaml_file(template_path) if sp.parameters is None or not all(param in sp.parameters for param in required_parameters): if error_message is None: error_message = f"Template must have these parameters: {', '.join(required_parameters)}" raise ValueError(f"{error_message}: '{sp}'") return sp