# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import logging
import uuid
from typing import Optional
from pyrit.common.utils import combine_dict, warn_if_set
from pyrit.executor.attack.component import ConversationManager
from pyrit.executor.attack.core import AttackConverterConfig, AttackScoringConfig
from pyrit.executor.attack.single_turn.single_turn_attack_strategy import (
SingleTurnAttackContext,
SingleTurnAttackStrategy,
)
from pyrit.models import (
AttackOutcome,
AttackResult,
ConversationReference,
ConversationType,
PromptRequestResponse,
Score,
SeedPrompt,
SeedPromptGroup,
)
from pyrit.prompt_normalizer import PromptNormalizer
from pyrit.prompt_target import PromptTarget
from pyrit.score import Scorer
logger = logging.getLogger(__name__)
[docs]
class PromptSendingAttack(SingleTurnAttackStrategy):
"""
Implementation of single-turn prompt sending attack strategy.
This class orchestrates a single-turn attack where malicious prompts are injected
to try to achieve a specific objective against a target system. The strategy evaluates
the target response using optional scorers to determine if the objective has been met.
The attack flow consists of:
1. Preparing the prompt based on the objective.
2. Sending the prompt to the target system through optional converters.
3. Evaluating the response with scorers if configured.
4. Retrying on failure up to the configured number of retries.
5. Returning the attack result with achievement status.
The strategy supports customization through prepended conversations, converters,
and multiple scorer types for comprehensive evaluation.
"""
[docs]
def __init__(
self,
*,
objective_target: PromptTarget,
attack_converter_config: Optional[AttackConverterConfig] = None,
attack_scoring_config: Optional[AttackScoringConfig] = None,
prompt_normalizer: Optional[PromptNormalizer] = None,
max_attempts_on_failure: int = 0,
) -> None:
"""
Initialize the prompt injection attack strategy.
Args:
objective_target (PromptTarget): The target system to attack.
attack_converter_config (Optional[AttackConverterConfig]): Configuration for prompt converters.
attack_scoring_config (Optional[AttackScoringConfig]): Configuration for scoring components.
prompt_normalizer (Optional[PromptNormalizer]): Normalizer for handling prompts.
max_attempts_on_failure (int): Maximum number of attempts to retry on failure.
Raises:
ValueError: If the objective scorer is not a true/false scorer.
"""
# Initialize base class
super().__init__(logger=logger, context_type=SingleTurnAttackContext)
# Store the objective target
self._objective_target = objective_target
# Initialize the converter configuration
attack_converter_config = attack_converter_config or AttackConverterConfig()
self._request_converters = attack_converter_config.request_converters
self._response_converters = attack_converter_config.response_converters
# Initialize scoring configuration
attack_scoring_config = attack_scoring_config or AttackScoringConfig()
# Check for unused optional parameters and warn if they are set
warn_if_set(config=attack_scoring_config, unused_fields=["refusal_scorer"], log=logger)
self._auxiliary_scorers = attack_scoring_config.auxiliary_scorers
self._objective_scorer = attack_scoring_config.objective_scorer
if self._objective_scorer and self._objective_scorer.scorer_type != "true_false":
raise ValueError("Objective scorer must be a true/false scorer")
# Skip criteria could be set directly in the injected prompt normalizer
self._prompt_normalizer = prompt_normalizer or PromptNormalizer()
self._conversation_manager = ConversationManager(
attack_identifier=self.get_identifier(),
prompt_normalizer=self._prompt_normalizer,
)
# Set the maximum attempts on failure
if max_attempts_on_failure < 0:
raise ValueError("max_attempts_on_failure must be a non-negative integer")
self._max_attempts_on_failure = max_attempts_on_failure
def _validate_context(self, *, context: SingleTurnAttackContext) -> None:
"""
Validate the context before executing the attack.
Args:
context (SingleTurnAttackContext): The attack context containing parameters and objective.
Raises:
ValueError: If the context is invalid.
"""
if not context.objective or context.objective.isspace():
raise ValueError("Attack objective must be provided and non-empty in the context")
async def _setup_async(self, *, context: SingleTurnAttackContext) -> None:
"""
Set up the attack by preparing conversation context.
Args:
context (SingleTurnAttackContext): The attack context containing attack parameters.
"""
# Ensure the context has a conversation ID
context.conversation_id = str(uuid.uuid4())
# Combine memory labels from context and attack strategy
context.memory_labels = combine_dict(self._memory_labels, context.memory_labels)
# Process prepended conversation if provided
await self._conversation_manager.update_conversation_state_async(
target=self._objective_target,
conversation_id=context.conversation_id,
prepended_conversation=context.prepended_conversation,
request_converters=self._request_converters,
response_converters=self._response_converters,
)
async def _perform_async(self, *, context: SingleTurnAttackContext) -> AttackResult:
"""
Perform the prompt injection attack.
Args:
context: The attack context with objective and parameters.
Returns:
AttackResult containing the outcome of the attack.
"""
# Log the attack configuration
self._logger.info(f"Starting {self.__class__.__name__} with objective: {context.objective}")
self._logger.info(f"Max attempts: {self._max_attempts_on_failure}")
# Execute with retries
response = None
score = None
# Attack execution steps:
# 1) Construct the seed prompt(s) that will be injected into the conversation
# 2) Send the prompt to the target model using the prompt normalizer helper
# 3) If the call fails or the response is filtered, retry as configured
# 4) When a response is obtained, optionally evaluate it with the objective scorer
# 5) Stop early if the objective is achieved; otherwise continue retry loop
# 6) After retries are exhausted, compile the final response and score
# 7) Return an AttackResult object that captures the outcome of the attack
# Prepare the prompt
prompt_group = self._get_prompt_group(context)
# Execute with retries
for attempt in range(self._max_attempts_on_failure + 1):
self._logger.debug(f"Attempt {attempt+1}/{self._max_attempts_on_failure + 1}")
# Send the prompt
response = await self._send_prompt_to_objective_target_async(prompt_group=prompt_group, context=context)
if not response:
self._logger.warning(f"No response received on attempt {attempt+1} (likely filtered)")
continue # Retry if no response (filtered or error)
# Score the response including auxiliary and objective scoring
score = await self._evaluate_response_async(response=response, objective=context.objective)
# If there is no objective, we have a response but can't determine success
if not self._objective_scorer:
break
# On success, return immediately
if bool(score and score.get_value()):
break
# On failure, store and create new conversation if there are more attempts remaining
if attempt < self._max_attempts_on_failure:
context.related_conversations.add(
ConversationReference(
conversation_id=context.conversation_id,
conversation_type=ConversationType.PRUNED,
)
)
await self._setup_async(context=context) # Reset conversation for next attempt
# Determine the outcome
outcome, outcome_reason = self._determine_attack_outcome(response=response, score=score, context=context)
result = AttackResult(
conversation_id=context.conversation_id,
objective=context.objective,
attack_identifier=self.get_identifier(),
last_response=response.get_piece() if response else None,
last_score=score,
related_conversations=context.related_conversations,
outcome=outcome,
outcome_reason=outcome_reason,
executed_turns=1,
)
return result
def _determine_attack_outcome(
self, *, response: Optional[PromptRequestResponse], score: Optional[Score], context: SingleTurnAttackContext
) -> tuple[AttackOutcome, Optional[str]]:
"""
Determine the outcome of the attack based on the response and score.
Args:
response (Optional[PromptRequestResponse]): The last response from the target (if any).
score (Optional[Score]): The objective score (if any).
context (SingleTurnAttackContext): The attack context containing configuration.
Returns:
tuple[AttackOutcome, Optional[str]]: A tuple of (outcome, outcome_reason).
"""
if not self._objective_scorer:
# No scorer means we can't determine success/failure
return AttackOutcome.UNDETERMINED, "No objective scorer configured"
if score and score.get_value():
# We have a positive score, so it's a success
return AttackOutcome.SUCCESS, "Objective achieved according to scorer"
if response:
# We got response(s) but none achieved the objective
return (
AttackOutcome.FAILURE,
f"Failed to achieve objective after {self._max_attempts_on_failure + 1} attempts",
)
# No response at all (all attempts filtered/failed)
return AttackOutcome.FAILURE, "All attempts were filtered or failed to get a response"
async def _teardown_async(self, *, context: SingleTurnAttackContext) -> None:
"""Clean up after attack execution"""
# Nothing to be done here, no-op
pass
def _get_prompt_group(self, context: SingleTurnAttackContext) -> SeedPromptGroup:
"""
Prepare the seed prompt group for the attack.
If a seed_prompt_group is provided in the context, it will be used directly.
Otherwise, creates a new SeedPromptGroup with the objective as a text prompt.
Args:
context (SingleTurnAttackContext): The attack context containing the objective
and optionally a pre-configured seed_prompt_group.
Returns:
SeedPromptGroup: The seed prompt group to be used in the attack.
"""
if context.seed_prompt_group:
return context.seed_prompt_group
return SeedPromptGroup(prompts=[SeedPrompt(value=context.objective, data_type="text")])
async def _send_prompt_to_objective_target_async(
self, *, prompt_group: SeedPromptGroup, context: SingleTurnAttackContext
) -> Optional[PromptRequestResponse]:
"""
Send the prompt to the target and return the response.
Args:
prompt_group (SeedPromptGroup): The seed prompt group to send.
context (SingleTurnAttackContext): The attack context containing parameters and labels.
Returns:
Optional[PromptRequestResponse]: The model's response if successful, or None if
the request was filtered, blocked, or encountered an error.
"""
return await self._prompt_normalizer.send_prompt_async(
seed_prompt_group=prompt_group,
target=self._objective_target,
conversation_id=context.conversation_id,
request_converter_configurations=self._request_converters,
response_converter_configurations=self._response_converters,
labels=context.memory_labels, # combined with strategy labels at _setup()
orchestrator_identifier=self.get_identifier(),
)
async def _evaluate_response_async(self, *, response: PromptRequestResponse, objective: str) -> Optional[Score]:
"""
Evaluate the response against the objective using the configured scorers.
This method first runs all auxiliary scorers (if configured) to collect additional
metrics, then runs the objective scorer to determine if the attack succeeded.
Args:
response (PromptRequestResponse): The response from the model.
objective (str): The natural-language description of the attack's objective.
Returns:
Optional[Score]: The score from the objective scorer if configured, or None if
no objective scorer is set. Note that auxiliary scorer results are not returned
but are still executed and stored.
"""
scoring_results = await Scorer.score_response_with_objective_async(
response=response,
auxiliary_scorers=self._auxiliary_scorers,
objective_scorers=[self._objective_scorer] if self._objective_scorer else None,
role_filter="assistant",
task=objective,
)
objective_scores = scoring_results["objective_scores"]
if not objective_scores:
return None
return objective_scores[0]