pyrit.score.ScorerEvalDatasetFiles#

class ScorerEvalDatasetFiles(human_labeled_datasets_files: List[str], result_file: str, harm_category: str | None = None)[source]#

Bases: object

Configuration for evaluating a scorer on a set of dataset files.

Maps input dataset files (via glob patterns) to an output result file. Multiple files matching the patterns will be concatenated before evaluation.

Parameters:
  • human_labeled_datasets_files (List[str]) – List of glob patterns to match CSV files. Examples: ["objective/*.csv"], ["objective/hate_speech.csv", "objective/violence.csv"]

  • result_file (str) – Name of the result file (stem used as dict key in results). Example: "objective_achieved_metrics.jsonl"

  • harm_category (Optional[str]) – The harm category for harm scorers (e.g., “hate_speech”, “violence”). Required for harm evaluations, ignored for objective evaluations. Defaults to None.

__init__(human_labeled_datasets_files: List[str], result_file: str, harm_category: str | None = None) None#

Methods

__init__(human_labeled_datasets_files, ...)

Attributes

harm_category: str | None = None#
human_labeled_datasets_files: List[str]#
result_file: str#