pyrit.score.ScorerEvalDatasetFiles#
- class ScorerEvalDatasetFiles(human_labeled_datasets_files: List[str], result_file: str, harm_category: str | None = None)[source]#
Bases:
objectConfiguration for evaluating a scorer on a set of dataset files.
Maps input dataset files (via glob patterns) to an output result file. Multiple files matching the patterns will be concatenated before evaluation.
- Parameters:
human_labeled_datasets_files (List[str]) – List of glob patterns to match CSV files. Examples:
["objective/*.csv"],["objective/hate_speech.csv", "objective/violence.csv"]result_file (str) – Name of the result file (stem used as dict key in results). Example:
"objective_achieved_metrics.jsonl"harm_category (Optional[str]) – The harm category for harm scorers (e.g., “hate_speech”, “violence”). Required for harm evaluations, ignored for objective evaluations. Defaults to None.
- __init__(human_labeled_datasets_files: List[str], result_file: str, harm_category: str | None = None) None#
Methods
__init__(human_labeled_datasets_files, ...)Attributes