Listing Available Classes#
Use get_names() to see what’s available, or list_metadata() for detailed information.
from pyrit.registry import ScenarioRegistry
registry = ScenarioRegistry.get_registry_singleton()
# Get all registered names
names = registry.get_names()
print(f"Available scenarios: {names[:5]}...") # Show first 5
# Get detailed metadata
metadata = registry.list_metadata()
for item in metadata[:2]: # Show first 2
print(f"\n{item.name}:")
print(f" Class: {item.class_name}")
print(f" Description: {item.description[:80]}...")
Available scenarios: ['airt.content_harms', 'airt.cyber', 'airt.scam', 'foundry.red_team_agent', 'garak.encoding']...
airt.content_harms:
Class: ContentHarms
Description: Content Harms Scenario implementation for PyRIT. This scenario contains various ...
airt.cyber:
Class: Cyber
Description: Cyber scenario implementation for PyRIT. This scenario tests how willing models ...
Getting a Class#
Use get_class() to retrieve a class by name. This returns the class itself, not an instance.
# Get a scenario class
scenario_class = registry.get_class("garak.encoding")
print(f"Got class: {scenario_class}")
print(f"Class name: {scenario_class.__name__}")
Got class: <class 'pyrit.scenario.scenarios.garak.encoding.Encoding'>
Class name: Encoding
Creating Instances#
Once you have a class, instantiate it with your parameters. You can also use create_instance() as a shortcut.
from pyrit.prompt_target import OpenAIChatTarget
from pyrit.setup import IN_MEMORY, initialize_pyrit_async
from pyrit.setup.initializers import LoadDefaultDatasets
await initialize_pyrit_async(memory_db_type=IN_MEMORY, initializers=[LoadDefaultDatasets()]) # type: ignore
target = OpenAIChatTarget()
# Option 1: Get class then instantiate
encoding_class = registry.get_class("garak.encoding")
scenario = encoding_class() # type: ignore
# Pass dataset configuration to initialize_async
await scenario.initialize_async(objective_target=target) # type: ignore
# Option 2: Use create_instance() shortcut
# scenario = registry.create_instance("encoding", objective_target=my_target, ...)
print("Scenarios can be instantiated with your target and parameters")
Found default environment files: ['C:\\Users\\rlundeen\\.pyrit\\.env', 'C:\\Users\\rlundeen\\.pyrit\\.env.local']
Loaded environment file: C:\Users\rlundeen\.pyrit\.env
Loaded environment file: C:\Users\rlundeen\.pyrit\.env.local
Loading datasets - this can take a few minutes: 0%| | 0/45 [00:00<?, ?dataset/s]
Loading datasets - this can take a few minutes: 2%|▋ | 1/45 [00:00<00:16, 2.70dataset/s]
Loading datasets - this can take a few minutes: 38%|██████████▉ | 17/45 [00:00<00:00, 46.49dataset/s]
Loading datasets - this can take a few minutes: 69%|███████████████████▉ | 31/45 [00:00<00:00, 56.82dataset/s]
Loading datasets - this can take a few minutes: 100%|█████████████████████████████| 45/45 [00:00<00:00, 66.94dataset/s]
Scenarios can be instantiated with your target and parameters
Checking Registration#
Registries support standard Python container operations.
# Check if a name is registered
print(f"'garak.encoding' registered: {'garak.encoding' in registry}")
print(f"'nonexistent' registered: {'nonexistent' in registry}")
# Get count of registered classes
print(f"Total scenarios: {len(registry)}")
# Iterate over names
for name in list(registry)[:3]:
print(f" - {name}")
'garak.encoding' registered: True
'nonexistent' registered: False
Total scenarios: 5
- airt.content_harms
- airt.cyber
- airt.scam
Using different registries#
There can be multiple registries. Below is doing a similar thing with the InitializerRegistry.
from pyrit.registry import InitializerRegistry
initializer_registry = InitializerRegistry.get_registry_singleton()
# Get all registered names
initializer_names = initializer_registry.get_names()
print(f"Available initializers: {initializer_names[:5]}...") # Show first 5
# Get detailed metadata
for init_item in initializer_registry.list_metadata()[:2]: # Show first 2
print(f"\n{init_item.name}:")
print(f" Class: {init_item.class_name}")
print(f" Description: {init_item.description[:80]}...")
Available initializers: ['airt', 'load_default_datasets', 'objective_list', 'openai_objective_target', 'simple']...
airt:
Class: AIRTInitializer
Description: AI Red Team setup with Azure OpenAI converters, composite harm/objective scorers...
load_default_datasets:
Class: LoadDefaultDatasets
Description: This configuration uses the DatasetLoader to load default datasets into memory.
...