pyrit.models.PromptResponse#

class PromptResponse(*, completion: str, prompt: str = '', id: str = '', completion_tokens: int = 0, prompt_tokens: int = 0, total_tokens: int = 0, model: str = '', object: str = '', created_at: int = 0, logprobs: bool | None = False, index: int = 0, finish_reason: str = '', api_request_time_to_complete_ns: int = 0, metadata: dict = {})[source]#

Bases: BaseModel

__init__(**data: Any) None#

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

load_from_file(file_path)

Load the Prompt Response from disk

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

save_to_file(directory_path)

Save the Prompt Response to disk and return the path of the new file.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

to_json()

update_forward_refs(**localns)

validate(value)

Attributes

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

completion

prompt

id

completion_tokens

prompt_tokens

total_tokens

model

object

created_at

logprobs

index

finish_reason

api_request_time_to_complete_ns

metadata

api_request_time_to_complete_ns: int#
completion: str#
completion_tokens: int#
created_at: int#
finish_reason: str#
id: str#
index: int#
static load_from_file(file_path: Path) PromptResponse[source]#

Load the Prompt Response from disk

Parameters:

file_path – The path to load the file from

Returns:

The loaded embedding response

logprobs: bool | None#
metadata: dict#
model: str#
model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

object: str#
prompt: str#
prompt_tokens: int#
save_to_file(directory_path: Path) str[source]#

Save the Prompt Response to disk and return the path of the new file.

Parameters:

directory_path – The path to save the file to

Returns:

The full path to the file that was saved

to_json() str[source]#
total_tokens: int#