submit_experiment()
is an asynchronous call to Azure Machine Learning
service to execute a trial on local or remote compute. Depending on the
configuration, submit_experiment()
will automatically prepare your
execution environments, execute your code, and capture your source code
and results in the experiment's run history.
To submit an experiment you first need to create a configuration object
describing how the experiment is to be run. The configuration depends on
the type of trial required. For a script run, provide an Estimator
object
to the config
parameter. For a HyperDrive run for hyperparameter tuning,
provide a HyperDriveConfig
to config
.
submit_experiment(experiment, config, tags = NULL)
experiment | The |
---|---|
config | The |
tags | A named list of tags for the submitted run, e.g.
|
The ScriptRun
or HyperDriveRun
object.
estimator()
, hyperdrive_config()
# This example submits an Estimator experiment if (FALSE) { ws <- load_workspace_from_config() compute_target <- get_compute(ws, cluster_name = 'mycluster') exp <- experiment(ws, name = 'myexperiment') est <- estimator(source_directory = '.', entry_script = 'train.R', compute_target = compute_target) run <- submit_experiment(exp, est) }