R/datastore.R
register_azure_blob_container_datastore.Rd
Register an Azure blob container as a datastore. You can choose to use either the SAS token or the storage account key.
register_azure_blob_container_datastore( workspace, datastore_name, container_name, account_name, sas_token = NULL, account_key = NULL, protocol = NULL, endpoint = NULL, overwrite = FALSE, create_if_not_exists = FALSE, skip_validation = FALSE, blob_cache_timeout = NULL, grant_workspace_access = FALSE, subscription_id = NULL, resource_group = NULL )
workspace | The |
---|---|
datastore_name | A string of the name of the datastore. The name must be case insensitive and can only contain alphanumeric characters and underscores. |
container_name | A string of the name of the Azure blob container. |
account_name | A string of the storage account name. |
sas_token | A string of the account SAS token. |
account_key | A string of the storage account key. |
protocol | A string of the protocol to use to connect to the
blob container. If |
endpoint | A string of the endpoint of the blob container.
If |
overwrite | If |
create_if_not_exists | If |
skip_validation | If |
blob_cache_timeout | An integer of the cache timeout in seconds
when this blob is mounted. If |
grant_workspace_access | If |
subscription_id | A string of the subscription id of the storage account. |
resource_group | A string of the resource group of the storage account. |
The AzureBlobDatastore
object.
In general we recommend Azure Blob storage over Azure File storage. Both standard and premium storage are available for blobs. Although more expensive, we suggest premium storage due to faster throughput speeds that may improve the speed of your training runs, particularly if you train against a large dataset.
if (FALSE) { ws <- load_workspace_from_config() ds <- register_azure_blob_container_datastore(ws, datastore_name = 'mydatastore', container_name = 'myazureblobcontainername', account_name = 'mystorageaccoutname', account_key = 'mystorageaccountkey') }