
Grand Tour of Azure API Management

Agenda
Azure API Management overview
In-depth look at the API life cycle phases

Design → Develop → Secure → Publish → Scale → Monitor → Analyze

Digital transformation is built on APIs

APIs

Frictionless consumption

Onboarding

Front door

Control

API governance and usage defines success

Façade

Abstraction

Aggregate or slice

Normalize or modernize

Decouple life cycle

Mock

Route and accelerate

Secure and protect

Transform

Observe

Discover and learn

Try

Obtain access

Get started

Azure API Management

User plane

Data plane

Management
plane

API

Apps
on devices

App
developers

Discover
Learn

Try
Onboard
Get help

Abstract
Secure
Evolve
Observe
MonetizeAPI

providers

Gateway

Developer portal

(micro)services

Employees
Partners

Customers

Consumption tier Developer | Basic | Standard | Premium tier
No infrastructure to provision or manage No infrastructure to provision or manage

Built-in auto-scaling down to zero Manual scaling or external auto-scaling

Consumption-based micro billing Billing based on reserved capacity

Variable, usage-based monthly cost Constant, predictable monthly cost

No reserved capacity Reserved capacity

Shared management plane Dedicated management, user, and data planes

On-demand activation Always on

Curated set of features and usage limits Full set of features. Not governed.

Fully-managed serverless and dedicated tiers

https://aka.ms/apimfeatures
https://aka.ms/apimlimits

Azure PolicyIT Pro Hosting

Azure On-premises IoT Edge Multi-cloud

App
Developer

VS Code GitHub Application
package

API Management

Web
App

Function
App

Logic
App

Azure Serverless

Integration
Events Messaging

Azure Kubernetes Service

Management

Azure Resource Manager Azure Arc

Azure Application Platform

Application platform

ML App Worker
App

Azure Integration Services – Enterprise iPaaS

Gartner named Microsoft a leader in 2021 Gartner Magic Quadrant for Enterprise iPaaS

https://azure.microsoft.com/fr-fr/blog/microsoft-named-as-a-leader-in-2021-gartner-magic-quadrant-for-enterprise-integration-platform-as-a-service/

API management is key in digital business ecosystem

API Management

Azure On-premisesOther Clouds

Extend innovation with citizen developers through easy
discovery and consumption of custom APIs

Enterprise marketplace for API-based
innovation

Unified management for custom APIs across
clouds and on-premises

Integrated early on into the API
development process

Power Apps

DataverseConnectors AI Builder

Marketplace of apps for employees, partners, and customers

Citizen developers
Able to accelerate app creation

IT pros
Able to govern all APIs and Apps

Professional developers
Able to amplify skills by maximizing

API reuse

End users
More productive and satisfied

employees, partners, and customers

Gartner named Microsoft a leader in 2021 Gartner Magic Quadrant for Low Code Application Platform

https://powerapps.microsoft.com/en-us/blog/microsoft-is-a-leader-in-the-2021-gartner-magic-quadrant-for-enterprise-low-code-application-platforms/

Value proposition

Mature full life cycle API management solution

Trusted by thousands of enterprise customers

Abstract, secure, observe, and make APIs discoverable in minutes

One solution for APIs across clouds and on-premises

Dependable, secure, scalable, and performant

DevOps and developer-friendly

Azure-native and integrated with other Azure services

Globally available and supported

Low-barrier-to-entry pricing

4.65T
API calls per annum
87% YoY growth 18K

Customers
38% YoY growth

840K
APIs under management
72% YoY growth

47%

35%

18%

Americas EMEA APAC

54 regions worldwide

Gartner named Microsoft a leader in 2021 Gartner Magic Quadrant for Full Life Cycle API Management

https://azure.microsoft.com/en-in/blog/microsoft-named-as-a-leader-in-2021-gartner-magic-quadrant-for-full-lifecycle-api-management/

Azure API Management Customers

Full API lifecycle
Design

Develop

Secure

PublishScale

Monitor

Analyze

API life cycle:
design

Design

Develop

Secure

PublishScale

Monitor

Analyze

Code- and design-first approaches to building APIs

API Management supports both approaches to building APIs:
Code-first approach

Implement the API and generate the API specification as an afterthought (i.e. with Swashbuckle)
Benefits:

More convenient for API developers
The only option for existing APIs

Design-first approach
Create an API specification, review it with stakeholders, and implement the API
Kickstart development by scaffolding the code from the API specification
Benefits:

Better API consumer experience thanks to the deliberate API design
Reduced risk thanks to the API review processes

Create an API

Support for SOAP, REST,
WebSocket and GraphQL APIs

Import an API from OpenAPI (1,
2, or 3), WADL, or WSDL files

Import an API from App Service,
Logic App, Function App, or
Container App

Create a blank API

Code-first approach – use the wildcard proxy mode

Wildcard “*” proxy mode
Use to route all requests through API Management if an accurate API specification doesn’t exist
Use built-in API design features to improve the specification

Define the API with form-based or text-
based editors in the Azure portal or the
Visual Studio Code extension

Test the API in the Azure portal and
generate schemas from the API responses

Design the API

Design-first approach – mock the API

Unblock front-end teams by mocking API responses
Use an example defined in the API definition
Configure with a single-line policy

API

200 OK

{
“message”: “example”

}

WebSocket API support

Passthrough support for WebSocket APIs
Client applications establish WebSocket connections with APIM
API Management establishes WebSocket connections with backend services
API Management proxies WebSocket messages

Features
CRUD WebSocket APIs
Apply policies to handshake requests
Browse WebSocket APIs in the Developer portal
Test WebSocket APIs in the Azure and Developer portals
Azure Monitor metrics and logs

WebSocketWebSocket

Gateway

GraphQL API support (Public preview)
Passthrough support for GraphQL APIs

CRUD existing GraphQL APIs via Azure portal and management API
Explore the schema and run test queries in the Azure and developer portals
Apply existing access control policies
Apply a new 'validate-graphql-request' policy to protect against GraphQL-specific attacks

Query validation
Field-based authorization
Query depth and size restriction

API life cycle:
develop

Design

Develop

Secure

PublishScale

Monitor

Analyze

There’s a policy for that

Encapsulate common API management functions
Access control, Protection, Transformation, Caching, …

Mutate request context or change API behavior
E.g. add a header or throttle

Set in the inbound and outbound directions

Apply at a variety of scopes or on error
Scope determines which APIs are affected
Can define custom scopes in addition to four available b default

Compose into a pipeline from effective scopes
Degree of control over inheritance of scopes, i.e. <base/> element
Don’t delete <base/> inadvertently

http://aka.ms/apimpolicyexamples

https://docs.microsoft.com/en-us/azure/api-management/api-management-policies
http://aka.ms/apimpolicyexamples

Policy scopes

global

product

api

operation

to backend

from backend

from caller

to caller

GET /foo/bar HTTP/1.1
Host: api.constoso.com
Key: 0123456789

0123456789

/foo

/bar

C# “snippets” used with policies
Have read-only access to the request context
Use only whitelisted .NET types
Used to configure and conditionally execute policies

53 policies out of the box
Access restriction Transformation Advanced Dapr integration

• Check HTTP header
• Limit call rate by subscription
• Limit call rate by key
• Restrict caller Ips
• Set usage quota by subscription
• Set usage quota by key
• Validate client certificate
• Validate JWT

• Convert JSON to XML
• Convert XML to JSON
• Find and replace string in body
• Mask URLs in content
• Set backend service
• Set body
• Set HTTP header
• Set query string parameter
• Rewrite URL
• Transform XML using XSLT

• Send one way request
• Send request
• Set HTTP proxy
• Set variable
• Set request method
• Set status code
• Control flow
• Emit metric
• Log to Event Hub
• Trace
• Mock response
• Forward request
• Limit concurrency
• Return response
• Retry
• Wait

• Send request to a service
• Send message to a pub/sub topic
• Trigger output binding

Authentication Caching Cross Domain Validation policies

• Authenticate with basic
• Authenticate with client certificate
• Authenticate with managed identity

• Get from cache
• Store to cache
• Get value from cache
• Store value from cache
• Remove value from cache

• Allow cross-domain calls
• CORS
• JSONP

• Validate content
• Validate parameters
• Validate headers
• Validate status code
• Validate GraphQL request

Integration policies

<send-request/>
Response composition (or gateway aggregation)

One client request -> multiple backend requests
Data lookup, complex content transformation, payload or credential validation

Typical pattern:
1. externalize logic as an HTTP endpoint
2. make a call
3. cache the result

<send-one-way-request/>
Traffic mirroring
Coordinate callouts with <wait> for all or any outstanding requests

<log-to-eventhub/>
Event Hub is widely supported within Azure
Custom reporting, batch analytics, archiving, audit
Customer has full control over what is logged, when it is logged and owns the data
We employ buffering (e.g. 200MB per node in Premium)
Delivery is not guaranteed – comprehensive set of metrics is available
It’s crucial to adequately scale the target Event Hub
Co-location in the region is highly recommended

https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation

Request forwarding
<forward-request/>

Usually inherited from the global scope via <base/>
No policy, no forwarding
Timeout can be set to 30 sec – 10 min (default is 5 min)
Can be configured to follow redirects or (default) return them to caller

<retry/>

Retry is triggered when specified expression evaluates as true
Choice of fixed, linear or exponential back off interval
Optional fast first retry
Does NOT retain a copy of the request automatically

<limit-concurrency/>
Caps the number of concurrent requests forwarded to the backend
Can be used with other policies - limits the number of requests entering enclosed policies

<set-backend-service>
Change backend service during runtime
Can be configured with conditional policies for blue/green deployment

https://github.com/Azure/api-management-policy-snippets/blob/master/examples/Random%20load%20balancer.policy.xml

Caching
Distributed Redis cache hosted as part of service instance (not available in the Consumption tier)

Shared among all units within a region
Not persistent and thus gets lost during service updates
No preloading

<cache-lookup/> and <cache-store/>
Caches response if it’s smaller than 2MB
Acts as server of origin – ignores cache control headers from backend and replaces them with own
With expressions possible to use cache control settings sent from backend
vary-by-developer and vary-by-group provide additional scope control
Can be configured to cache requests with Authorization header
Properly handles conditional requests (e.g. if-match, if-modified-since)
Cache hit ratio is provided as a metric

<cache-lookup-value> & <cache-store-value>
Entity to cache and a key are specified by expressions
Invalidation

TTL or LRU
Any policy change invalidates cache entries at that scope
<cache-remove-value/> removes an entry with a specified key

Bring your own cache
Add externally provisioned, Redis-compatible cache

Full control over cache configuration and size
Ability to preload and purge cache content
Ability to independently scale cache

Only cache option in the Consumption tier
Cache policies are extended to work with external cache

Added cache-preference attribute
Can be set to “internal”, “external”, (default) “prefer-external”

Can use different cache types at different scopes

Throttling
Accuracy of (distributed) throttling policies is limited by synchronization latency

<rate-limit-by-key/>
Number of calls allowed in short interval (usually 1 sec)
Enforced per region
Key expression specifies throttling semantics, e.g. caller IP, subscription ID, developer ID
Uses sliding time window, i.e. last 5 seconds
Counts every request or only the ones that meet specified condition, e.g. only 200 OK
Different requests can be weighted differently, e.g. based on cost to the backend
Legacy <rate-limit/> == <rate-limit-by-key/> with subscription ID as a key

<quota-by-key/>
Total number of calls and/or bytes per time period (usually hour, day, week, month)
Enforced per service instance
Key expression specifies throttling semantics, e.g. caller IP, subscription ID, developer ID
Uses calendar time
Counts every request or only the ones that meet specified condition, e.g. status < 400
Different requests can be weighted differently, e.g. based on value provided to the caller
Legacy <quota/> == <quota-by-key/> with subscription ID as a key

Authentication
Authentication using subscription keys is supported out-of-the-box without configuring policies

<validate-jwt>
validates JSON Web Tokens
Supports JWS and JWE (RSA256 and HS256)
Supports Open ID Configuration endpoint
Can also check specific claims
Can be configured at any policy scope

<validate-client-certificate>
Enforce that a certificate presented by a client matches the specified validation rules and claims, such as subject, thumbprint, or issuer

Transformation
<set-header> and <set-query-parameter>

Add/remove/modify headers and query parameters of incoming and outgoing requests

<set-body>
Set the payload of incoming and outgoing requests

<rewrite-url>
Convert request URL from its public form to the form expected by the backend service

<xml-to-json> and <json-to-xml>
Convert payload of incoming and outgoing requests between XML and JSON

<find-and-replace>
Find and replace substrings in the payload of incoming and outgoing requests

<xsl-transform>
Applies XSL transformation to XML in the payload of incoming and outgoing requests

Validation
<validate-content>

Validates the size or JSON schema of a request or response body against the API schema

<validate-parameters>
Validates the header, query, or path parameters in requests against the API schema

<validate-headers>
Validates the responses headers against the API schema

<validate-status-code>
Validates the HTTP status codes in responses against the API schema

<validate-graphql-request>
Validates and authorizes a request to a GraphQL API

Visual Studio Code

Designed to increase productivity

Convenient resource explorer

Advanced policy editor

Policy debugging

Syntax check and IntelliSense

Embedded REST client for testing

Integrated with automation tools

Command palette support

Live policy debugging in Visual Studio Code

Postmortem debugging
Rely on logs after requests are processed

Live debugging
Follow the processing of requests in real time

Features
Initiate live debugging session from VS Code
Single-step through policies
Set breakpoints at individual policies
Inspect system-created and user-created variables
Examine errors

Restrictions & limitations
Developer-tier only
One debugging session per instance

Design-first API development

Design an API with OpenAPI spec
Mock API responses to unblock front-
end developers
Scaffold Azure Functions in VS Code
Fill in the business logic
Supported languages

C#
Java
Python
TypeScript

Automate API Management deployments

Context
Multiple deployment environments, e.g. development, QA, production
Some of the environments are shared, e.g. production
Many API development teams each responsible for one or more APIs

Problems
Automate deployment of APIs into API Management
Migrate configurations from one environment to another
Avoid interference between development teams

There is no one-size-fit-all solution

Deployment
options

APIs
PowerShell Cmdlets
Azure CLI
Resource Manager Templates
Bicep
Terraform
SDKs

SOAP-to-REST

One-click modernization of legacy services
Import a WSDL, get a REST API façade instantly
APIM does all the conversions using heuristics
Customers have full control of the conversions through policies
Known restrictions

https://docs.microsoft.com/en-us/azure/api-management/api-management-api-import-restrictions

Production

API developers

Development

API publishers

Publisher repository Developer repository

https://aka.ms/apimdevops

Recommended approach

API life cycle:
secure

Design

Develop

Secure

PublishScale

Monitor

Analyze

API Management to the rescue
OWASP API Top 10 (2019) Mitigations and preventive measures in API Management

1 Broken Object Level Authorization

2 Broken Authentication Key/token/certificate-based authentication
Request transformation

3 Excessive Data Exposure Filtering or masking sensitive data
Request and response validation

4 Lack of Resources & Rate Limiting Throttling and quota limit
Backend concurrency

5 Broken Function Level Authorization Key/token-based authorization
Custom authorization

6 Mass assignment Request and response validation

7 Security misconfigurations TLS enforcement and configuration
CORS
Sanitization of response headers and error messages
Ciphers and protocols management
Coming soon: security configuration recommendations

8 Injection Request and response validation

9 Improper Assets Management Up-to-date API catalog
API lifecycle management

10 Insufficient logging and monitoring Logging

Management
plane

API

Gateway

Secure all points of interaction

Developer portal

Data plane

Management plane“User plane”

App developers

Apps on devices

API providers

Backend APIs

Data plane security

Gateway Backend APIsApp on a deviceUser

HTTP Basic (shared secret)
Mutual certificate
OAuth 2 OBO
Managed identity
IP filter
Private networking

Façade
Key
OAuth 2
Client certificate
Custom authN/authZ
IP filter
Request/response validation
Throttling

Firewall

OWASP core rule sets
Bot protection rule set
Custom rules

Expose selected backend APIs

Allow chosen HTTP methods and routes

Enforce TLS and its configuration

Define CORS rules

Restrict client IPs

Façade

Turned on and UUID by default

Can be rotated and set to custom values

Identify developer and app

Roughly equivalent to HTTP Basic

security-wise

Keys

Signed (JWS) and encrypted (JWE)

Validate via policy and expressions

Enforce claims

Require signatures and expiration time

Provide keys inline or via a metadata

endpoint

JWT

Issued by trusted and untrusted CA

Use the validate-client-certificate policy

Require certificate on per host basis

Check or ignore revocation lists

Client
certificates

Integrate with a bespoke or unsupported

identity or authorization system

Call out to an external HTTPS endpoint

Cache the result for efficiency

Custom
authentication
and
authorization

Rate limit
Approximate
Per region
Key expression defines throttling semantics
Can count requests with specific status code
Variable increment count

Quota
Calls and data transfer
Approximate
Per service
Key expression defines throttling semantics
Can count requests with specific status code
Variable increment count

Concurrency limit
Precise
Per node

Throttling

Filter or mask confidential data

Standardize error messages

Remove sensitive headers

Response
sanitization

Request and
response
validation

Use request and response validation
policies to protect your APIs from
vulnerabilities

DoS large
payload
attack

Excessive
data

exposure
OWASP API Top 10

Mass
assignment

OWASP API Top 10

Injection

OWASP API Top 10

Validation policies
Four policies

Validate content - validates the size or JSON schema of a request or response body against the API schema
Validate parameters - validates the request header, query, or path parameters against the API schema
Validate headers - validates the response headers against the API schema
Validate status code - validates the HTTP status codes in responses against the API schema

Prevention and detection modes
Granular overrides for child elements
Logging of errors to a context variable

Use the tracing policy to send logs to Application Insights

Performance implications and limits
Max body size: 100 kB
Max schema size: 4 MB
The larger the API schema size, the lower the throughput
The larger the payload in a request or response, the lower the throughput
The size of the API schema has a larger impact on performance than the size of the payload
Validation against an API schema that is several megabytes in size may cause request or response timeouts

Mass assignment

Attackers modify object properties they are not supposed to
Usually caused by binding client-provided data (e.g., JSON) to data models, without explicit filtering of properties
Attackers explore other API endpoints, read documentation, or blindly guess additional object properties
Attackers inject additional object properties into request payloads

Mitigation
Set the “additionalProperties” option of request objects’ JSON schemas to false
Precisely define request object schemas in the API specification and enforce them with the validate-content policy

<validate-content unspecified-content-type-action="prevent" max-size="102400" size-
exceeded-action="prevent">

<content type="application/json" validate-as="json" action="prevent" />
</validate-content>

Injection

Malicious data in a request executes unintended commands or accesses data
without proper authorization

For example, SQL or NoSQL injection

Mitigation
Provide format properties, like regex for text fields, in the API specification’s object schemas and enforce them with the
validate-content policy

<validate-content unspecified-content-type-action="prevent" max-size="102400" size-
exceeded-action="prevent">

<content type="application/json" validate-as="json" action="prevent" />
</validate-content>

Excessive data exposure

API responses surface sensitive or excessive data
Developers tend to expose all object properties without considering their individual sensitivity
They rely on clients to perform the data filtering before displaying it to the user

Mitigation
Set the “additionalProperties” option of response objects’ JSON schemas to false
Precisely define response object schemas in the API specification and enforce them with the validate-content policy
Define all allowed response status codes in the API specification and enforce them with the validate-status-code policy
Precisely define all allowed response headers in the API specification and enforce them with the validate-headers policy

<validate-headers specified-header-action="prevent" unspecified-header-
action="prevent"/>

<validate-status-code unspecified-status-code-action="prevent" />

DoS large payload attack

Large-payload requests cause API outages
Malicious requests block the API traffic on system’s bottlenecks
They occupy networking resources and consume excessive computing power

Mitigation
Enforce maximum request content size with the content-validation policy

<validate-content max-size="102400" size-exceeded-action="prevent"
unspecified-content-type-action="prevent" />

Private networking and upstream security

External configuration

Management plane security

API providers
Management

plane

API

Azure Resource
Manager

Azure portal
Resource Manager templates
PowerShell
Azure CLI
Client SDKs
Visual Studio/Code extensions
Terraform templates

Azure account (Azure AD)
Built-in roles
Custom roles

“User plane” security

Developer portal
App developers

Work and internet accounts
Integration with Azure AD B2B/B2C
Custom (delegated) authentication
Native and Azure AD groups
Self-service or invite-only onboarding to API products
Auto or manual approval of subscriptions
Limits on the number of subscriptions
Subscription suspension and revocation

Employee developers
Partner developers
Customer developers
Public developers

Compliance

Meets a multitude of global, regional, country and industry specific regulations

ISO 27001
PCI DSS
HIPAA
FedRAMP High
GDPR
…

Full list and documentation available on https://aka.ms/apim/trusted

https://aka.ms/apim/trusted

Gateway

Management
plane

API

End-to-end security and compliance

Developer portal

App developers

Apps on devices

API providers

Backend APIs

Azure platform + built-in capabilities + Azure services

API life cycle:
publish

Design

Develop

Secure

PublishScale

Monitor

Analyze

Developer portal is a discovery and self-onboarding point for
application developers

Built-in developer portal lets API consumers Discover APIs

Learn how to use them

Test them out with interactive console

Create and manage accounts

Request and manage API access

Analyze API usage

Developer portal is…

Built-into API Management Open the portal within seconds; updates are on us.

Fast go-to-market Rely on default styling and content to minimize customizations.

Easily customizable Author content and brand the portal with a drag-and-drop visual editor.

Open-source Browse the codebase and engage with the community on GitHub.

Extensible Extend the codebase with custom logic and self-host the resulting portal.

Automatable Automate deployments via APIs.

Portal
customizations

Create content with the drag-
and-drop visual editor without
writing any code

Use widgets to connect to the
API Management service (i.e., to
retrieve the list of APIs or sign in
a user)

Customize the portal in a
dedicated style guide panel

API usage reports

Application developers explore
their usage of APIs in the
developer portal

API providers analyze the usage
in the Azure portal

Reports are grouped by time,
response type, bandwidth,
products, subscription keys, APIs,
and API operations

Extensibility of the developer portal

If the out-of-the-box capabilities are insufficient, you can:
• Request a feature on GitHub
• Contribute code on GitHub
• Fork the repository, extend the code base, and self-host the portal

Self-hosting the portal is simple and efficient
Portal generates static files for hosting in the cloud or on premises
Recommended hosting with Azure Storage Account

Developer portal

API versioning

Revisions

For non-breaking changes

Providers choose when to deploy

API requests default to current revision

Test by specifying revision ID, then promote

Versions

For breaking changes

Consumers choose when to adopt

Specify with URL path, query, or header param

Versions and revisions

/v1

/v2

;rev=1

;rev=2

;rev=3

;rev=4

;rev=1

;rev=2

/speakers
/sessions
/days

https://example.org/ foo

Domain API Version RevisionOperation

/events
/speakers
/sessions
/venues

offline

online

current

Bundle APIs with products

API 1

API 2

API 3

API 4

Browse products and associated APIs
Subscribe to products
Manage subscriptions and keys

Developer portal

Management plane

Manage products and API associations
Define product-scoped policies
Approve and manage subscriptions
Collect and analyze usage data
Monetize access

Gateway

Authenticate API requests with keys
Execute product-scoped policies

Users, groups, products, APIs, and subscriptions

Products not requiring subscriptions

API Portal

Standalone modern API documentation portal
Customize it through a drag-and-drop, no-code visual editor
Contains REST API reference pages, code samples, and interactive console
Relies on the same technology as the Azure API Management’s developer portal

GitHub-based API ecosystem for communication and collaboration
Track source code changes
Automate portal deployments with GitHub Actions
Host the site for free with GitHub Pages

Sample use cases
Enterprise-wide API catalog for discoverability, deduplication of assets, and business efficiency
Branded API documentation portal for partners or external consumers for discoverability and self-
onboarding

https://aka.ms/ApiPortal

https://aka.ms/ApiPortal

Demo

Monetization

Support for common monetization models
Subscriptions with call quotas
Per call fee
Pre-paid calls with overages

API Management collects the data to support these models
Subscription billing – list of active subscriptions in a billing period
Metered billing - # of requests per subscription in the billing period

Customers are responsible for integration with payment providers
Sample solution for Stripe and Ayden

Integration mechanisms
Subscription delegation on the developer portal
Management API

https://github.com/microsoft/azure-api-management-monetization

API life cycle:
scale

Design

Develop

Secure

PublishScale

Monitor

Analyze

Worldwide presence

44 public regions in Americas, Europe, Asia, Australia, Africa
6 US Government regions
4 regions in China

Browse all available regions on azure.microsoft.com

https://azure.microsoft.com/global-infrastructure/services/?products=api-management

Higher availability with multi-region feature
Improved availability of the data plane – 99.99% vs 99.95% SLA
Reduced latency of API calls
Single Premium instance can be scaled across multiple regions

Additional units can be deployed into the Primary or other Secondary region
Regions can have a different number of units
Regions and units come at an additional cost

Primary region hosts all the components
Gateway, developer portal, management API, …
Developer portal and management API are inaccessible if Primary region becomes unavailable

Secondary region hosts gateway only
Secondaries can operate on a last received configuration while the Primary region is unavailable
They periodically try to reconnect and catch up

All APIs are available in every region
Requests are routed to the closest available region by Azure Traffic Manager

Uses Traffic Manager’s performance routing with 5min TTL

Regional endpoints enable custom traffic management, for example for data sovereignty

https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods

Default multi-region topology

Custom multi-region topology

Availability
Zones

Obtain 99.99% SLA with two (or more) zones in a
single region

Improve resiliency of the primary region in a
multi-region deployment

Each unit contains all API Management
components

Units must be evenly distributed across zones

Available in the Premium tier in every AZ-
enabled Azure region

Self-hosted API gateway

Deployable to on-premises or cloud
Functionally equivalent to the managed gateway
Packaged as a Linux-based Docker container image
Available from the Microsoft Container Registry

Managed and observed from Azure
Requires only outgoing connectivity to Azure on port 443
Connects to a “parent” API Management service
Pulls down configuration and pushes up telemetry

Simple to provision and operate
Just a single container
Easy to evaluate on a laptop with Docker Desktop or Minikube
Kubernetes provides availability, scaling, rolling upgrades, and more

Self-hosted gateway pricing

Developer tier
Pre-production environments
Unlimited gateway locations
Single node per location
No additional charge

Premium tier
Production environments
Unlimited gateway locations
Unlimited nodes per location
Paid add-on

Nodes in a gateway location share configuration – e.g., APIs, domain names, certificates

Distributed deployment

…

…

Data plane communication

Management plane communication

Virtual network

Gateway pod Gateway pod

API Managers

Kubernetes cluster 1

App 1 pod

Sidecar

User App

App 2 pod

Sidecar

User AppLegend:

Management Plane

Data Plane

Dapr integration policies

Sidecar

API Management

Kubernetes cluster 2

App 1 pod

Sidecar

User App

App 3 pod

Sidecar

User App

Self-hosted gateway 2

Sidecar

API Consumers

Self-hosted gateway 1

Isolated SKU

Same capabilities as the Premium SKU
Ensures compute isolation
Meets US Department of Defense IL5 requirements
In Public Preview

Price TBA, contact support to provision

https://docs.microsoft.com/en-us/azure/azure-government/azure-secure-isolation-guidance
https://docs.microsoft.com/en-us/azure/azure-government/documentation-government-impact-level-5

Backup and restore for disaster recovery
Backup

Usually takes around 10 min
Captures everything but reports and custom domain settings in a blob
Service configuration operations (e.g., scaling, upgrades) are blocked while backup is in progress
Changes applied after backup starts are not included in the backup

Restore
Could take as long as 30 min or more depending on the size
Instance is not available while restore is in progress
Custom domain configuration need to be re-applied manually

Standby failover instance can reduce RTO
Create backup instance in a different region in advance
Configure custom domain identically to the active instance
Sync configuration with the active instance periodically to achieve desired RPO
To fail over update the CNAME to reference backup instance
Scale up if and as required

Troubleshooting and support

SLA
99.95% in all tiers
99.99% in the Premium tier with multi-region configured

Self-troubleshoot
Built-in automated troubleshooting experiences in the Azure portal
Extensive documentation on Azure Docs

Supported by Azure Support
Requires support plan
Available worldwide in nine languages: English, Spanish, French, German, Italian, Portuguese,
Traditional Chinese, Korean, and Japanese
24x7 in English for severity A and B and in Japanese for severity A

https://aka.ms/apimsla
https://aka.ms/apimdocs

API life cycle:
monitor &
analyze

Design

Develop

Secure

PublishScale

Monitor

Analyze

Monitor and analyze features
Tech Reporting Monitoring Debugging Data lag Retention Sampling Data schema Data kind Enabled

API inspector - - Good Instant Last 100 traces Turned on
per request

Fixed
can be extended Request trace Always

Built-in
reports Good - - Minutes Unspecified 100% Fixed Reports

Logs via API Always

Azure
Monitor
Metrics

Basic Good - Minutes 93 days
export to extend

100% Fixed Metrics Always

Azure
Monitor Logs Good Good Good Minutes 31 day (5GB)

upgrade to extend

100%
adjustable

Fixed
can be extended Logs Optional

Application
Insights Good Good Good Seconds 90 days (5GB)

upgrade to extend
Custom

Choice of
presets

can be extended
Logs, metrics Optional

Log to Event
Hub Custom Custom Custom Seconds User managed Custom Custom Logs Optional

API Inspector
Request scoped trace
Turned on per request
Fixed schema (can be extended)

Azure Monitor
metrics
Aggregated metrics
Always-on
Samples all requests
93-day retention
Alerts and notifications

Azure Monitor logs
Request scoped logs
Opt-in
Adjustable sampling
Fixed schema (can be extended)
31-day retention (5GB)
Built-in query experience

Application Insights
Request scoped traces
Opt-in
Adjustable sampling
90-day retention (5GB)
Distributed tracing

Built-in reports
Out-of-the-box
Always-on
Rich report types
Access via Azure portal or API

Data plane

Gateway

Apps
on devices

Custom analytics and reporting

(micro)services

Event Hub Stream Analytics Power BI

Machine Learning SQL Database

Hadoop Storage
Business users

(Azure account is not required)

Event Grid integration

API
Management Event Grid

Events publisher Events subscribers

Logic App

Function App

Webhook

Integration with Event Grid
Send event notifications to Event Grid system topic of type Microsoft.ApiManagement
Trigger downstream processes on Azure Logic App, Azure Functions or via Webhook
Published events are CRUD of API, Product, Release, Subscriptions, User *

* At the time of GA (Nov. 21)

Management
plane

Gateway Dev portal

(UDP, Unix socket)(UDP)

(librato, dogStatsD, influxDB)

(stdout)

Just an exampleJust an example

Self-hosted gateway

Mature full life cycle API management solution

Trusted by thousands of enterprise customers

Abstract, secure, observe, and make APIs
discoverable in minutes

One solution for APIs across clouds and on-
premises

Dependable, secure, scalable, and performant

DevOps- and developer-friendly

Azure-native and integrated with other Azure
services

Globally available and supported

Low-barrier-to-entry pricing

Design

Develop

Secure

PublishScale

Monitor

Analyze

Azure API Management

Resources https://aka.ms/apimlove

https://aka.ms/apimlove

Questions

Photo by Ilkka Kärkkäinen on Unsplash

https://unsplash.com/@ilkkago?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/question-mark?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© Copyright Microsoft Corporation. All rights reserved.

