
E-book series

Platform engineering
An introduction to start right, stay right, and get right

Platform Engineering 2

01 /

Introduction

02 /

Start right, stay right,

and get right

03 /

Build a paved path

04 /

Make it easy

05 /

Start where you are

06 /

Measure success

07 /

Principles of

platform engineering

08 /

Next steps

 Platform Engineering 3

Introduction

When tools, services, and

systems support efficient ways

of working at scale—without

compromising privacy, security,

or compliance—developers are

freed up to apply their ingenuity

to the more creative aspects of

collaborating and product-

making. Organizations get the

impact they’ve invested in. End

customers get products they

love and trust. And the

developers who deliver that

impact and build those products

feel more purposeful and

satisfied than ever before.

That’s the promise of platform

engineering, a practice built on

DevOps principles that we

adopted across Microsoft.

Platform Engineering 4

We’re always looking for ways to drive

engineering excellence and support high-

performing teams. DevOps practices

continue, but our customers tell us that

inconsistent compliance and manual

processes slow progress and increase costs.

Even as organizations take advantage of the

latest cloud-native systems, Forrester

Research reports that they “have yet to

realize fundamental expectations of

collaboration, cost optimization, and

process efficiencies.”1

Our own experience is a case in point. In the

past several years, our development teams

have embraced distributed computing,

cloud-native services, open source, AI, and

more. Their day-to-day work has grown

more complex, and their learning curve has

spiked as new tools—and more of them—

are adopted. Developers use an average of

16 tools per day,2 and it takes 23 minutes3

to regain focus after switching from one

1 A Forrester study on unleashing cloud-native for new levels

of value delivery. MIT Technology Review. March 14, 2022.
2 Meyer, André N. et al. The work life of developers: Activities,

switches and perceived productivity. IEEE Transactions on Software

Engineering. December 1, 2017.

context to another. Their role requires them

to outwit hackers while meeting aggressive

deadlines and speeding innovations to

market. And they’re burning out.

We needed a human remedy for the

modern developer experience—something

so common that researchers just call it

DevEx.4 As engineers in a world where all

companies are becoming software

companies, we realized that our own

productivity and agility starts with DevEx.

We approached platform engineering with

the goal of resolving specific pain points and

blockers, but along the way we saw

improvements in compliance, security, costs,

and time to value—all the factors that

impact productivity, efficiency, and

innovation.

This e-book shares our best learnings so

your organization can build the foundation

of a platform engineering practice and you

can start seeing the benefits for yourself.

3 The cost of interrupted work: More speed and stress. 2008.
4 Noda, Abi, et al. DevEx: What actually drives productivity.

Association for Computing Machinery. May 3, 2023.

https://www.technologyreview.com/2022/03/14/1047159/a-forrester-study-on-unleashing-cloud-native-for-new-levels-of-value-delivery/
https://www.technologyreview.com/2022/03/14/1047159/a-forrester-study-on-unleashing-cloud-native-for-new-levels-of-value-delivery/
https://ieeexplore.ieee.org/document/7829407
https://ieeexplore.ieee.org/document/7829407
https://ics.uci.edu/~gmark/chi08-mark.pdf
https://queue.acm.org/detail.cfm?id=3595878

Platform Engineering 5

Start right,
stay right,
and get right

Platform engineering is a practice and

a cultural shift. When DevEx is the focus,

two clear goals emerge:

• Developers must have fast access to

what they need within a secure,

governed framework. We call this self-

service with guardrails.

• Developers are your customers, and your

engineering systems and application

platforms are the products they need.

We recommend setting up a product team

dedicated to creating an internal developer

platform (IDP), as we did. This team helps

drive DevEx and can identify and ease the

challenges of supporting teams. Maybe

Operations is drowning in tickets, or other

delivery systems are out of compliance. The

dedicated platform engineering team uses

its central position to drive three initiatives

for your organization.

Start right by equipping developers with

self-service tools.

Self-service gives developers the autonomy

they need to deploy resources on demand

and stay productive while remaining within

the bounds of your organization’s

guardrails—security, compliance,

operations, standards, and costs. Templates

are the building blocks of platform

engineering. They help developers start

right with fewer errors. Using infrastructure

as code (IaC) through continuous delivery

(CD) pipelines is another important part

of enabling self-service and scaling

compliance. You can even apply an

“everything as code” pattern to policies and

people. If it’s code, it can be tracked,

versioned, checked, automated, and

repeated consistently.

Stay right by enforcing guidance,

governance, and policy.

Keeping your initiative on track requires

visibility into engineering systems and

applications, monitoring and incident

management, and continuous improvement

practices. Combining start-right templates

with stay-right guidance and automation

helps ensure that developers stay right.

Get right by starting with the easiest

platforms and projects.

DevEx is a mindset shift, and it takes time.

You can start by making the most of existing

investments and bringing them into

compliance. The best practices and building

blocks in this guide can help you find the

right place to start.

Platform Engineering 6

R E C O M M E N D E D R E A D I N G

What is platform engineering?

Platform engineering principles

Empower Developers through self-service

with guardrails

DevEx is at the center of platform engineering, a movement that improves the experience of developers and

supporting teams. To start right, developers need easy access to tools and systems that comply with your

requirements. They stay right through automated governance and policy. To get right, your organization

needs to think of developers as an internal customer and look for ways to improve their experience.

https://learn.microsoft.com/platform-engineering/what-is-platform-engineering
https://learn.microsoft.com/en-us/platform-engineering/about/principles
https://learn.microsoft.com/platform-engineering/about/self-service
https://learn.microsoft.com/platform-engineering/about/self-service

Platform Engineering 7

Build a paved
path

Without any organization-level guidance,

development teams can quickly start

duplicating work and creating tool sprawl.

It’s not just inefficient—it also increases your

risks around security and compliance. A

paved path keeps developers speeding

along in the right direction. Paved paths are

happy paths—they reduce bureaucratic

hurdles for both development and

operations teams.

The simplest way to build a paved path for

your teams is to reuse existing investments.

The goal is to give them an IDP that curates

the best available services, tools, and

processes for deploying, running, and

operating applications and their runtime

environments.

An IDP is uniquely suited to your

organization and goals. To build it, you need

input from key stakeholders—your security,

architecture, and operations teams. Your

platform engineering team needs to collect

input about the IDP, set the standards, and

codify the best practices into reusable

templates and system capabilities. The team

builds and manages your IDP like a product

and treats your developers as its end

customer. If designed and socialized well,

your IDP goes viral and DevEx gets a boost.

Our own paved path for secure, governed

development with team-level flexibility is

1ES (for One Engineering System). Used

across Microsoft, 1ES includes development

environments, collaboration tools, and

continuous integration (CI)/CD pipelines

that set the baselines for security,

integration, and management. With

standardized engineering systems as the

foundation, our application developers can

more easily extend and customize as

needed. We lean toward opinionated stacks

that support standardization through

predefined conventions, best practices, and

design patterns.

Developers also need access to APIs,

orchestrators, templates, and other tools.

We automate as much as possible, using IaC

templates to deploy consistent, compliant

environments that are governed by policy.

We provide a shared Azure Kubernetes

Service (AKS) cluster and provide self-service

access to individual developers so they can

deploy their applications to a dedicated

namespace, integrate with other services,

and move their work forward.

Platform Engineering 8

R E C O M M E N D E D R E A D I N G

Each customer is important

Adopt a product mindset

Build your team

An IDP builds a paved path by defining a range of engineering systems, application platforms, and application

templates for your developers. It gives them self-service access to the APIs and tools they need for identity,

orchestration, and insights. The input of a designated platform engineering team is key to driving standards and

selecting the right tools and processes that help your teams start right and stay right.

 pp ication p atforms

 pp ication temp ates

En ineerin systems

 eve oper se f service

https://learn.microsoft.com/en-us/platform-engineering/about/customers
https://learn.microsoft.com/platform-engineering/about/product-mindset
https://learn.microsoft.com/platform-engineering/team

Platform Engineering 9

Make it easy

Adoption efforts can falter if developers feel

pressured into narrow choices. One team

might like Jenkins, Docker Registry, and

Terraform; another could prefer Azure

Pipelines, Helm charts, and Azure Container

Registry. The idea is to provide great tooling

and supported experiences that smoothly

guide your teams through critical

requirements and standards.

To make it easy for your internal customers

to find what they need, you can begin

centralizing resources. A common first step

is to create a catalog of the command line

interfaces (CLIs), APIs, and other tools that

developers need.

Many organizations build a self-service

portal that enables developers to freely

create and destroy cloud resources. For

example, consider the requirements of a

team creating a stateful service application.

Team members can select suitable,

preconfigured templates from a catalog and

generate a pull request that automatically

creates a shared Kubernetes cluster along

with Azure Key Vault for storing secrets and

keys, Azure Cosmos DB for data, and other

resources that comply with our policies. The

CI/CD pipeline has built-in checkpoints that

keep workstreams in compliance.

However, centralization does not equal

portal. The goal is to give developers access

to the platform with the tools they prefer,

such as CLI and REST, and promote

discoverability and reuse. You can expand

your efforts as needs change.

R E C O M M E N D E D R E A D I N G

Improve discovery and eliminate waste

Design a developer self-service foundation

Centralized access to resources reduces tool sprawl

so developers can start right and operations teams

can govern and monitor.

https://learn.microsoft.com/platform-engineering/about/discoverability
https://learn.microsoft.com/platform-engineering/developer-self-service

Platform Engineering 10

Start where
you are

Platform engineering is a cultural shift that

takes time, and it isn’t a sequential process.

You can start small and meet developers

where they are—in the workflows and tools

they’re already using. A great place to start

is by automating the high toil areas, where

your efforts have a direct and immediate

impact on developers. What are their key

challenges and pain points? What are your

business priorities? Is it security, compliance,

time to value? Depending on the answers,

you can set targets that deliver maximum

business value, whether that’s an investment

in common deployment patterns,

development environment and tools, or

other resources.

Before investing in specific resources, it

helps to conduct an inventory. With better

visibility of the resources across your

ecosystem, you can choose where to invest

and what to deprecate. For example, several

services that help developers discover

resources also help your operations teams

manage, track, and clean up those

resources, including Azure Deployment

Environments, Azure API Center, and

package registries like GitHub Packages

or Azure Artifacts.

As you scale your efforts, your inventories

help you audit and uncover technical sprawl.

You can begin centralizing control of your

resources. When you find and fill gaps, you

can better protect identity and secrets,

enforce policies and role-based access

control, and verify compliance.

To stay right, it helps to build security,

compliance, and cost controls into the

resources used by developers. As a first step,

we recommend defining permissions and

policies for individual templates and

enforcing least privilege and least access

policies according to role, project, and stage

of development.

R E C O M M E N D E D R E A D I N G

Meet users where they are

Use the everything as code pattern

https://learn.microsoft.com/azure/deployment-environments/overview-what-is-azure-deployment-environments
https://learn.microsoft.com/azure/deployment-environments/overview-what-is-azure-deployment-environments
https://learn.microsoft.com/azure/api-center/overview
https://github.com/features/packages
https://learn.microsoft.com/azure/devops/artifacts/start-using-azure-artifacts
https://learn.microsoft.com/en-us/platform-engineering/about/customers#meet-users-where-they-are
https://learn.microsoft.com/platform-engineering/about/self-service#use-the-everything-as-code-pattern

Platform Engineering 11

Measure success

Measuring success with key performance

indicators informs product decisions and

helps you refine and invest in the right areas.

Ours evolved over time. Today we use a

variety of metrics to help us see how

customers use 1ES. We look at the

acquisition, retention, and engagement of

specific features and measure user

satisfaction. We assess pipeline throughput

to see how efficient the DevOps process is,

measuring the time to build, test, deploy,

and improve. We use live-health metrics to

monitor our IDP like any other product

platform, and track how quickly issues are

detected and fixed. We also survey

employees to collect their concerns and

monitor for burnout. Even vacation time can

be used as a metric of our own productivity

and the success of our DevEx efforts.

Metrics can help you make the case for your

next investment, but the best metric is the

one that matters most to your organization.

Simply start with that one, work toward

improvement, and repeat.

With DevEx as a key component of platform

engineering, measuring customer

satisfaction is always important. The

platform engineering team needs to listen

to its internal customers and build a

feedback loop. A focus on customer-driven

requirements can help you retain key talent

as you move along in your platform

engineering journey.

R E C O M M E N D E D R E A D I N G

Plan and prioritize

Start your platform engineering journey

Apply software engineering systems

Refine your application platform

Success metrics help you track satisfaction

with your IDP and direct platform

engineering efforts.

https://learn.microsoft.com/platform-engineering/plan
https://learn.microsoft.com/platform-engineering/journey
https://learn.microsoft.com/platform-engineering/engineering-systems
https://learn.microsoft.com/platform-engineering/application-platform

Platform Engineering 12

“There cannot be a

more important thing

for an engineer, for a

product team, than to

work on the systems

that drive productivity.

So I would, any day of

the week, trade off

features for our own

productivity.”

Satya Nadella

Microsoft Chief Executive Officer

Code to Cloud 13

Principles of
platform
engineering

• Make each customer important.

• Adopt a product mindset.

• Empower developers through

self-service with guardrails.

• Improve discovery.

• Eliminate waste through

inventories and relationship-

tracking.

Platform Engineering 14

Next steps

To help you set up the right practices

for your organization, we’ve made our

learnings available on the Platform

engineering website.

©2024 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including URL and other internet website
references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

https://learn.microsoft.com/platform-engineering/
https://learn.microsoft.com/platform-engineering/

