
E-book series

Code to cloud
with Azure Kubernetes
Service

Code to cloud 2

01 /

Introduction

 3 Go from code to cloud at warp speed

 4 Get a faster, more productive developer experience

02 /

Inner loop

 7 Use Codespaces to configure your dev environment

 8 Add extensions to Visual Studio Code

 9 Use automated deployments

10 Connect and iterate using Bridge to Kubernetes

03 /

Outer loop

12 Automate CI/CD using GitHub Actions

13 Streamline DevOps and the outer loop

14 Monitor and observe

04 /

Next steps

Code to cloud 3

 I N T R O D U C T I O N

 Go from code to
cloud at warp
speed

If you’re just getting started with Kubernetes,

you may be learning a new set of infrastructure

concepts, like containerization, Kubernetes

manifests, and ingresses. Even experienced

developers have questions about

containerizing and deploying their apps on

Kubernetes clusters for the first time. However,

you don’t have to be an expert to get started

quickly with Azure Kubernetes Service (AKS).

As a fully managed version of the open-source

Kubernetes platform, AKS automates the

complexity of scaling distributed apps and

handles many of the infrastructure details,

making it the time-saving choice for teams

building large-scale projects.

Using the recommendations in this

e-book, you can get a noncontainerized

application deployed on a Kubernetes cluster—

in minutes. The code-to-cloud tool chain

includes familiar environments and automated

workflows that streamline the developer

experience and support best practices in the

software development lifecycle.

Code to cloud 4

Get a faster,
more productive
developer
experience

With Kubernetes, “code to cloud” really

means “code to container to cloud.” The

workflow takes a suite of tools, starting with

an integrated development environment

(IDE) that supports Kubernetes. You also

need a way to build and push a container

image of your application and store it

securely in a registry. Then you pull an

image from the registry and deploy it to

a Kubernetes cluster, for which you need

secure access, a way of handling Kubernetes

Secrets, and some form of Domain Name

System (DNS) resolution, and other details.

But what happens when you need to make

changes to your application? You don’t

want to be slowed down by building and

pushing a new container image every time.

And what about security, keys and secrets,

and other infrastructure considerations that

development teams need to be aware of but

often don’t control?

The inner loop workflow is used to develop and test

locally. The outer loop pipeline deploys apps to

development and production environments.

Code to cloud 5

The AKS code-to-cloud tool chain uses

automation and AI to make the inner loop

developer experience fast and fun while

streamlining the handoff to the platform

operators in the outer loop. For example,

you can use Visual Studio Code with a smart

copilot to automate repetitive steps and

streamline the iterative process of writing,

building, and debugging code. When it’s

time to build and deploy your code, the

automated deployments feature in AKS

handles critical steps for you.

In the outer loop, a continuous integration

(CI) and continuous deployment (CD)

pipeline automates the build and

deployment process across the clusters you

use for testing, development, staging, and

production. Here, too, automated

deployments are the key to a quick setup.

Our recommended code-to-cloud tool chain helps automate and integrate the steps needed to deploy container

apps and microservices to Azure Kubernetes Service (AKS) clusters.

https://learn.microsoft.com/azure/aks/automated-deployments

Code to Cloud 6

“We will actually

rebuild the full house

to run on Azure and

AKS to create

flexibility and

scalability in our

digital tech stack.”

Søren Bering Andersen

Head of Digital & Technology,

LEGO House

Code to cloud 7

I N N E R L O O P

Use Codespaces
to configure your
dev environment

Let’s say you want to create microservices to

run on a Kubernetes cluster, and you’ve

chosen Docker to containerize your

application. You’re ready to set up your IDE.

You need to install Docker and kubectl (the

Kubernetes command-line interface), plus

any tools specific to the programming

language you’re using. And you need to go

through the same process for the next

project you want to start.

There’s a better way. You can spin up a dev

environment configuration as easily as

Kubernetes spins up nodes. With GitHub

Codespaces, you and your project’s

collaborators get the same environment,

saving you the time that you would have

spent in setup tasks. Codespaces are tailored

development environments, like your own

personal IDE in the cloud.

A codespace is hosted in a Docker container

running on a virtual machine (VM) with up

to 32 cores and 64 GB RAM. Access is

flexible—you and your team can connect to

your codespace from a web browser or from

Visual Studio Code, or you can use Git CLI.

The environment on your local machine isn’t

changed. When you launch your codespace,

you’re good to go. You don’t need to install

dependencies on your developer machine

to build and run the code because the

codespace standardizes your project’s

configuration.

Your codespace can specify your runtime

requirements, hardware specifications,

extensions, and editor settings, not to

mention all the Kubernetes tools you need,

such as Docker, kubectl, the Azure CLI (az),

Visual Studio Code extensions, and project-

specific build tools, like npm, Gradle, Maven,

or dotnet. You then check the configuration

into your source code’s repository, where it's

ready every time you need it.

TIP Organizations that want more control

over the development environment can

explore Microsoft Dev Box, an Azure service

that provides preconfigured, project-specific

developer workstations.

Code to cloud 8

I N N E R L O O P

Add extensions
to Visual Studio
Code

When you launch your codespace, it can

include all the AKS extensions you need to

work productively from within a familiar

Visual Studio Code environment. With these

extensions, you can generate smarter code

faster in Visual Studio Code.

Github Copilot offers suggestions as you

code and works with popular programming

languages. An AI-pair programmer, it uses

the language models developed by OpenAI

to speed up development. Copilot can

suggest code completions, generate

snippets, autofill repetitive code patterns,

and show you alternative solutions. It even

converts comments to code.

We recommend adding the GitHub Copilot

extension to your dev container for the

codespace so that any future codespaces

you create will have it.

AKS extension for Visual Studio Code gives

you one-click access to AKS commands and

features. This extension makes Visual Studio

Code aware of your Azure subscription and

resources, in addition to the namespaces

and services running on your Kubernetes

cluster. It enables you to:

• Draft a Dockerfile for your application

code.

• Build a container image using Azure

Container Registry.

• Draft Kubernetes deployment and

service manifests.

• Draft a Kubernetes ingress that uses the

Web Application Routing add-on with

Azure DNS and Azure Key Vault

integration.

• Draft a CI/CD workflow based on GitHub

Actions.

Azure Account extension adds Azure Cloud

Shell to the Visual Studio Code terminal

so you can use Bash or Azure PowerShell

to interactively manage Azure resources.

It also provides a single Azure sign-in

and subscription filtering for all other

Azure extensions.

Developer tools for AKS extension

streamlines noncluster tasks in Visual Studio

Code, such as creating deployment files and

configuring GitHub Actions workflows to

deploy applications to AKS.

https://docs.github.com/copilot
https://azure.github.io/vscode-aks-tools/index.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.aks-devx-tools

Code to cloud 9

I N N E R L O O P

Use automated
deployments

You don’t need to understand all the

moving parts to move to the next step

quickly. Using automated deployments, you

can build what is essentially a first draft of

a containerized application running in AKS.

This feature is based on Draft, an open-

source tool created by Microsoft and

extended by the community. You can select

Automated deployments in the Azure

portal, work with the command-line version,

or get the extension for Visual Studio Code.

Automated deployments generate the

artifacts associated with a containerized

application for you, including:

• Creating the Dockerfile, generating the

Kubernetes manifests (deployment.yaml

and service.yaml), and deploying your

application to the cluster you specify.

• Setting up an automated workflow for

the software development lifecycle and

keeping it in sync by generating

a GitHub Actions workflow file.

Azure resources are created for you,

including Azure Key Vault and Azure DNS.

Just like that, you have a CI/CD pipeline that

automatically deploys changes to your

Kubernetes cluster.

The automated deployments feature generates the artifacts associated with a containerized application for you,

including the actions used for a CI/CD workflow.

https://learn.microsoft.com/azure/aks/automated-deployments

Code to cloud 10

I N N E R L O O P

Connect and
iterate using
Bridge to
Kubernetes

If you had to build and deploy your code to

your Kubernetes cluster every time you

made a change, you’d spend a lot of time

waiting. Unless you’re building a small app,

it’s probably impractical to clone your entire

application and its dependencies on your

personal computer so you can iterate locally.

The Bridge to Kubernetes tool solves this

problem by enabling you to run and debug

your code locally—regardless of the number

of microservices or interdependent services

and databases.

Bridge to Kubernetes is an open-source tool

that works from the command line and with

Visual Studio, Visual Studio Code, and

GitHub Codespaces. The bridge refers to a

connection between your dev computer and

your cluster. As you test and iterate locally,

Bridge to Kubernetes takes care of routing,

isolating your development traffic, and

redirecting requests to your development

environment.

This local port forwarding means that

multiple team members can develop in

isolation while avoiding disruption to other

traffic in the cluster. You can run your code

natively in your development environment

while connected to a Kubernetes cluster and

test your code changes in the context of the

larger application—without having to

deploy all the application dependencies

locally. You also don’t need to build, push,

and deploy a new container image for each

code change.

https://learn.microsoft.com/en-us/visualstudio/bridge/bridge-to-kubernetes-vs-code

Code to Cloud 11

“A tool like GitHub

Copilot is so impactful

at large companies

because suddenly

engineers can make

impactful changes to

other developers’

code with little

previous exposure.”

Severin Hacker

Chief Technology Officer,

Duolingo

Code to cloud 12

O U T E R L O O P

Automate CI/CD
with GitHub
Actions

When you use AKS automated deployments

to generate a deployment workflow, behind

the scenes, GitHub Actions are doing the

work. An action specifies the step to take,

such as creating the manifest, creating

secrets, deploying the manifest, and

substituting artifacts. The result is

an automated software development

lifecycle workflow.

To get a closer look and customize these

actions, see the GitHub Actions for

Kubernetes. For example, the action

to deploy Kubernetes manifests

to Kubernetes clusters (azure/k8s-deploy)

supports strategies for basic, canary, and

blue-green deployments.

You can also use GitHub Actions for

Azure to create repeatable workflows in

your repository so you can build, test,

package, release, and deploy to Azure

using Azure services.

When you use automated deployments, Visual

Studio Code extensions, or the Azure portal to

generate a deployment workflow, you are using

GitHub Actions.

https://learn.microsoft.com/azure/developer/github/github-actions
https://github.com/marketplace/actions/deploy-to-kubernetes-cluster
https://github.com/marketplace/actions/deploy-to-kubernetes-cluster

Code to cloud 13

O U T E R L O O P

Streamline
DevOps and the
outer loop

Just as GitHub Actions automate the CI/CD

workflow, infrastructure automation helps

smooth the transition from your inner loop

development environment to the outer

loop. Infrastructure automation applies

DevOps best practices to your Kubernetes

clusters, automating version control,

collaboration, and compliance.

When you combine CI/CD with

infrastructure automation, you create a

powerful DevOps pipeline that simplifies

configuration management and creates a

reliable audit trail of changes. Here are some

best practices.

Automate deployment safeguards

to enforce best practices. Based on Azure

Policy, deployment safeguards assign the

Warning level to tell you when an image

is out of compliance. The Enforcement level

denies deployments that don’t follow

best practices.

Track operations with GitOps. Infrastructure

as code (IaC) automates system and

infrastructure management. GitOps is a

popular choice that enables you to

declaratively track the desired state of your

Kubernetes clusters. A Git repository

contains versioned files and manifests used

by the Kubernetes controllers running in

your clusters. The controllers continually

reconcile the cluster state with the desired

state declared in your repository. Changes

between versions are easily tracked, and you

can recreate clusters with the same desired

state when you need to.

https://learn.microsoft.com/azure/aks/deployment-safeguards
https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/conceptual-gitops-flux2

Code to cloud 14

O U T E R L O O P

Monitor and
observe

The code-to-cloud experience needs

visibility. Managed versions of the popular

Grafana dashboards and Prometheus

metrics make it easy to collect and analyze

AKS data. Azure Monitor managed service

for Prometheus collects data about your AKS

clusters, and Azure Managed Grafana brings

it together.

For Azure-native monitoring with one click,

you can use autoinstrumentation for

Azure Monitor Application Insights. This

shortcut enables Application Insights

to make metrics, requests, dependencies,

and other telemetry available in your

Application Insights resource and provides

easy access to an overview dashboard and

application map.

Another way to keep tabs on your

distributed apps is to store all your

application settings and feature flags in one

place. Azure App Configuration gives you a

central location for managing these settings.

You can dynamically change application

settings without redeploying or restarting

your application, and you can control

feature availability in real time.

To go a step further, you can add

a dedicated infrastructure layer called

a service mesh to your applications. It

enables you to transparently add

observability, traffic management, security,

and other capabilities without adding them

to your own code. The Istio-based service

mesh add-on provides an officially

supported and tested integration for AKS.

TIP For more shortcuts and quick insights,

try using Microsoft Copilot for Azure in the

Azure portal. For example, you can ask

Copilot, “Tell me what my average CPU

utilization is for this environment” and get

a detailed operational rundown.

https://learn.microsoft.com/azure/azure-monitor/essentials/prometheus-metrics-overview
https://learn.microsoft.com/azure/azure-monitor/essentials/prometheus-metrics-overview
https://learn.microsoft.com/azure/managed-grafana/overview
https://learn.microsoft.com/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/azure/azure-app-configuration/quickstart-azure-app-configuration-create?tabs=azure-portal
https://learn.microsoft.com/azure/aks/istio-about
https://learn.microsoft.com/azure/aks/istio-about
https://learn.microsoft.com/azure/copilot/overview

Code to cloud 15

Next steps

When you’re
ready to go
deeper, here are
some ideas.

Simplify autoscaling. As your deployment

grows, you need to consider scalability.

For burst or high-volume scenarios, the

Kubernetes Event-driven Autoscaling

(KEDA) add-on applies event-driven

autoscaling to your application to meet

demand cost-effectively. You can set scale

rules declaratively based on several metrics,

including Azure Storage Queue length,

Azure Service Bus messages, and dozens

of KEDA scalers.

Start secure and stay secure. To start secure

means to detect and remediate issues

before they start moving down the pipeline

to the registry, cluster, nodes, and

application. To stay secure, you need

threat detection and remediation tools,

plus ongoing workload protection. For

a helpful end-to-end framework, see the

Microsoft Containers Secure Supply Chain.

For security management, we recommend

Microsoft Defender for Cloud.

Learn more at
azure.com

©2024 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including URL and other internet website
references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

https://learn.microsoft.com/azure/aks/keda-about
https://learn.microsoft.com/azure/aks/keda-about
https://keda.sh/docs/scalers/
https://learn.microsoft.com/azure/security/container-secure-supply-chain/articles/container-secure-supply-chain-implementation/containers-secure-supply-chain-overview
https://learn.microsoft.com/azure/defender-for-cloud/defender-for-cloud-introduction
https://azure.microsoft.com/products/kubernetes-service/
https://azure.microsoft.com/products/kubernetes-service/
https://azure.microsoft.com/products/kubernetes-service/

	Go from code to cloud at warp speed
	Get a faster, more productive developer experience
	Use Codespaces to configure your dev environment
	Add extensions to Visual Studio Code
	Use automated deployments
	Connect and iterate using Bridge to Kubernetes
	Automate CI/CD with GitHub Actions
	Streamline DevOps and the outer loop
	Monitor and observe
	Next steps
	When you’re ready to go deeper, here are some ideas.

